Lattice of all topologies of countable module over countable rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 63-70
Voir la notice de l'article provenant de la source Math-Net.Ru
For any countable ring $R$ with discrete topology $\tau_0$ and any countable $R$-module $M$ the lattice of all $(R,\tau_0)$-module topologies contains:
– A sublattice which is isomorphic to the lattice of all real numbers with the usual order;
– Two to the power of continuum $(R,\tau_0)$-module topologies each of which is a coatom.
@article{BASM_2016_2_a5,
author = {V. I. Arnautov and G. N. Ermakova},
title = {Lattice of all topologies of countable module over countable rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {63--70},
publisher = {mathdoc},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a5/}
}
TY - JOUR AU - V. I. Arnautov AU - G. N. Ermakova TI - Lattice of all topologies of countable module over countable rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 63 EP - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_2_a5/ LA - en ID - BASM_2016_2_a5 ER -
V. I. Arnautov; G. N. Ermakova. Lattice of all topologies of countable module over countable rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 63-70. http://geodesic.mathdoc.fr/item/BASM_2016_2_a5/