On spectrum of medial $T_2$-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 143-154

Voir la notice de l'article provenant de la source Math-Net.Ru

There exist medial $T_2$-quasigroups of any order of the form $$ 2^{k_1}3^{k_2}5^{k_3}11^{k_4}17^{k_5}23^{k_6}53^{k_7}59^{k_8}83^{k_9}101^{k_{10}}p_1^{\alpha_1}p_2^{\alpha_2}\dots p_m^{\alpha_m}, $$ where $k_1\geq2$, $k_2,\dots,k_{10}\geq1$, $p_i$ are prime numbers of the form $6t+1$, $\alpha_i \in\mathbb N$, $i\in\{1,\dots,m\}$. Some other results on $T_2$-quasigroups are given.
@article{BASM_2016_2_a10,
     author = {A. V. Scerbacova and V. A. Shcherbacov},
     title = {On spectrum of medial $T_2$-quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {143--154},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a10/}
}
TY  - JOUR
AU  - A. V. Scerbacova
AU  - V. A. Shcherbacov
TI  - On spectrum of medial $T_2$-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 143
EP  - 154
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_2_a10/
LA  - en
ID  - BASM_2016_2_a10
ER  - 
%0 Journal Article
%A A. V. Scerbacova
%A V. A. Shcherbacov
%T On spectrum of medial $T_2$-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 143-154
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_2_a10/
%G en
%F BASM_2016_2_a10
A. V. Scerbacova; V. A. Shcherbacov. On spectrum of medial $T_2$-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 143-154. http://geodesic.mathdoc.fr/item/BASM_2016_2_a10/