Lacunary ideal convergence in probabilistic normed space
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study the notion of lacunary $I$-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary $I$-limit points and lacunary $I$-cluster points have been defined and the relation between them has been established. Furthermore, lacunary Cauchy and lacunary $I$-Cauchy sequences are introduced and studied. Finally, we provided example which shows that our method of convergence in probabilistic normed spaces is more general.
@article{BASM_2016_2_a0,
     author = {Bipan Hazarika and Ayhan Esi},
     title = {Lacunary ideal convergence in probabilistic normed space},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--17},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a0/}
}
TY  - JOUR
AU  - Bipan Hazarika
AU  - Ayhan Esi
TI  - Lacunary ideal convergence in probabilistic normed space
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 3
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_2_a0/
LA  - en
ID  - BASM_2016_2_a0
ER  - 
%0 Journal Article
%A Bipan Hazarika
%A Ayhan Esi
%T Lacunary ideal convergence in probabilistic normed space
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 3-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_2_a0/
%G en
%F BASM_2016_2_a0
Bipan Hazarika; Ayhan Esi. Lacunary ideal convergence in probabilistic normed space. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 3-17. http://geodesic.mathdoc.fr/item/BASM_2016_2_a0/