@article{BASM_2016_1_a8,
author = {P. Syrbu and D. Ceban},
title = {On paratopies of orthogonal systems of ternary {quasigroups.~I}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {91--117},
year = {2016},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2016_1_a8/}
}
P. Syrbu; D. Ceban. On paratopies of orthogonal systems of ternary quasigroups. I. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 91-117. http://geodesic.mathdoc.fr/item/BASM_2016_1_a8/
[1] Belousov V., “Systems of orthogonal operations”, Mat. Sbornik, 77(119):1 (1968), 38–58 (in Russian) | MR | Zbl
[2] Belousov V., “Parastrofic-orthogonal quasigroups”, Quasigroups and Related Systems, 14 (2005), 3–51 | MR
[3] Belousov V., $n$-Ary quasigroups, Shtiintsa, Chisinau, 1972 (in Russian) | MR
[4] Belousov V., Yakubov T., “On orthogonal $n$-ary operations”, Vopr. Kibernetiki, 16, 1975, 3–17 (in Russian)
[5] Evans T., “Latin cubes orthogonal to their transposes – a ternary analogue of Stein quasigroups”, Aequationes Math., 9 (1973), 296–297 | DOI | MR | Zbl
[6] Syrbu P., “On orthogonal and self-orthogonal $n$-ary operations”, Mat. Issled., 66 (1987), 121–129 (in Russian) | MR
[7] Syrbu P., “On $\pi$-quasigroups isotopic to abelian groups”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2009, no. 3(61), 109–117 | MR | Zbl
[8] Syrbu P., Ceban D., “On $\pi$-quasigroups of type $T_1.$”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 2(75), 36–43 | MR | Zbl
[9] Ceban D., Syrbu P., “On the holomorph of $\pi$-quasigroups of type $T_1$”, Proceedings IMCS-50, The 3rd Conference of Math. Society of the Republic of Moldova (Chisinau, August 19–23, 2014), 34–37 | Zbl
[10] Belyavskaya G., “Successively orthogonal systems of $k$-ary operations”, Quasigroups and Related Systems, 22 (2014), 165–178 | MR | Zbl