Doubly transitive sets of even permutations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 78-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate doubly transitive sets of permutations which consist of even permutations.
@article{BASM_2016_1_a6,
     author = {G\'abor P. Nagy},
     title = {Doubly transitive sets of even permutations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {78--82},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_1_a6/}
}
TY  - JOUR
AU  - Gábor P. Nagy
TI  - Doubly transitive sets of even permutations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 78
EP  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_1_a6/
LA  - en
ID  - BASM_2016_1_a6
ER  - 
%0 Journal Article
%A Gábor P. Nagy
%T Doubly transitive sets of even permutations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 78-82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_1_a6/
%G en
%F BASM_2016_1_a6
Gábor P. Nagy. Doubly transitive sets of even permutations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 78-82. http://geodesic.mathdoc.fr/item/BASM_2016_1_a6/

[1] Belousov V. D., “On the definition of the concept of a quasi-field”, Bul. Akad. Stiince RSS Moldoven, 6 (1964), 3–10 | MR | Zbl

[2] Belousov V. D., Algebraic nets and quasigroups, Ştiinţa, Kishinev, 1971 (in Russian)

[3] Dembowski P., Finite geometries, Ser. Ergebnisse der Mathematik und ihrer Grenzgebiete, 44, Springer-Verlag, Berlin, 1968 | MR | Zbl

[4] Dénes J., Keedwell A. D., Latin squares and their applications, Academic Press, New York–London, 1974 | MR | Zbl

[5] GAP – Groups, Algorithms, and Programming, Version 4.7.9, , The GAP Group, 2015 http://www.gap-system.org

[6] Grundhöfer T., Müller P., “Sharply 2-transitive sets of permutations and groups of affine projectivities”, Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 50:1 (2009), 143–154 | MR | Zbl

[7] Hall M., “Projective planes”, Trans. Amer. Math. Soc., 54 (1943), 229–277 | DOI | MR | Zbl

[8] Hughes D. R., Piper F. C., Projective planes, Graduate Texts in Mathematics, 6, Springer-Verlag, New York, 1973 | MR | Zbl

[9] Károlyi G., Private communication, 2015

[10] Müller P., Nagy G. P., “On the non-existence of sharply transitive sets of permutations in certain finite permutation groups”, Advances in Mathematics of Communications, 5:2 (2011), 303–308 | DOI | MR | Zbl

[11] Nagy G. P., Vojtechovsky P., LOOPS, computing with quasigroups and loops in GAP, Version 3.1.0, , 2015, Refereed GAP package http://www.math.du.edu/loops

[12] Nagy G. P., “Semifields in loop theory and in finite geometry”, Quasigroups and Related Systems, 19:1 (2011), 109–122 | MR | Zbl