Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_1_a6, author = {G\'abor P. Nagy}, title = {Doubly transitive sets of even permutations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {78--82}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2016_1_a6/} }
Gábor P. Nagy. Doubly transitive sets of even permutations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 78-82. http://geodesic.mathdoc.fr/item/BASM_2016_1_a6/
[1] Belousov V. D., “On the definition of the concept of a quasi-field”, Bul. Akad. Stiince RSS Moldoven, 6 (1964), 3–10 | MR | Zbl
[2] Belousov V. D., Algebraic nets and quasigroups, Ştiinţa, Kishinev, 1971 (in Russian)
[3] Dembowski P., Finite geometries, Ser. Ergebnisse der Mathematik und ihrer Grenzgebiete, 44, Springer-Verlag, Berlin, 1968 | MR | Zbl
[4] Dénes J., Keedwell A. D., Latin squares and their applications, Academic Press, New York–London, 1974 | MR | Zbl
[5] GAP – Groups, Algorithms, and Programming, Version 4.7.9, , The GAP Group, 2015 http://www.gap-system.org
[6] Grundhöfer T., Müller P., “Sharply 2-transitive sets of permutations and groups of affine projectivities”, Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 50:1 (2009), 143–154 | MR | Zbl
[7] Hall M., “Projective planes”, Trans. Amer. Math. Soc., 54 (1943), 229–277 | DOI | MR | Zbl
[8] Hughes D. R., Piper F. C., Projective planes, Graduate Texts in Mathematics, 6, Springer-Verlag, New York, 1973 | MR | Zbl
[9] Károlyi G., Private communication, 2015
[10] Müller P., Nagy G. P., “On the non-existence of sharply transitive sets of permutations in certain finite permutation groups”, Advances in Mathematics of Communications, 5:2 (2011), 303–308 | DOI | MR | Zbl
[11] Nagy G. P., Vojtechovsky P., LOOPS, computing with quasigroups and loops in GAP, Version 3.1.0, , 2015, Refereed GAP package http://www.math.du.edu/loops
[12] Nagy G. P., “Semifields in loop theory and in finite geometry”, Quasigroups and Related Systems, 19:1 (2011), 109–122 | MR | Zbl