Central and medial quasigroups of small order
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 24-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We enumerate central and medial quasigroups of order less than $128$ up to isomorphism, with the exception of those quasigroups that are isotopic to $C_4\times C_2^4$, $C_2^6$, $C_3^4$ or $C_5^3$. We give an explicit formula for the number of quasigroups that are affine over a finite cyclic group.
@article{BASM_2016_1_a2,
author = {David Stanovsk\'y and Petr Vojt\v{e}chovsk\'y},
title = {Central and medial quasigroups of small order},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {24--40},
publisher = {mathdoc},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2016_1_a2/}
}
TY - JOUR AU - David Stanovský AU - Petr Vojtěchovský TI - Central and medial quasigroups of small order JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 24 EP - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_1_a2/ LA - en ID - BASM_2016_1_a2 ER -
David Stanovský; Petr Vojtěchovský. Central and medial quasigroups of small order. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 24-40. http://geodesic.mathdoc.fr/item/BASM_2016_1_a2/