Third Hankel determinant for the inverse of reciprocal of bounded turning functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain the best possible upper bound to the third Hankel determinants for the functions belonging to the class of reciprocal of bounded turning functions using Toeplitz determinants.
@article{BASM_2015_3_a3,
     author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani},
     title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {50--59},
     year = {2015},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/}
}
TY  - JOUR
AU  - B. Venkateswarlu
AU  - D. Vamshee Krishna
AU  - N. Rani
TI  - Third Hankel determinant for the inverse of reciprocal of bounded turning functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 50
EP  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/
LA  - en
ID  - BASM_2015_3_a3
ER  - 
%0 Journal Article
%A B. Venkateswarlu
%A D. Vamshee Krishna
%A N. Rani
%T Third Hankel determinant for the inverse of reciprocal of bounded turning functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 50-59
%N 3
%U http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/
%G en
%F BASM_2015_3_a3
B. Venkateswarlu; D. Vamshee Krishna; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59. http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/

[1] Ali R. M., “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc. (second series), 26:1 (2003), 63–71 | MR | Zbl

[2] Babalola K. O., “On $H_3(1)$ Hankel determinant for some classes of Uni-valent Functions”, Inequality Theory and Applications, 6 (2010), 1–7

[3] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR | Zbl

[4] Ehrenborg R., “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR | Zbl

[5] Grenander U., Szegö G., Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984 | MR | Zbl

[6] Janteng A., Halim S. A., Darus M., “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR

[7] Layman J. W., “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl

[8] Libera R. J., Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal P$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl

[9] Mac Gregor T. H., “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl

[10] Noor K. I., “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl

[11] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl

[12] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl

[13] Simon B., Orthogonal polynomials on the unit circle. Part 1. Classical theory, AMS Colloquium Publ., 54, Part 1, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[14] Vamshee Krishna D., Venkateswarlu B., Ramreddy T., “Third Hankel determinant for the inverse of a function whose derivative has a positive real part”, Math. Stud., 42:1 (2014), 54–60 | MR | Zbl