Third Hankel determinant for the inverse of reciprocal of bounded turning functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the best possible upper bound to the third Hankel determinants for the functions belonging to the class of reciprocal of bounded turning functions using Toeplitz determinants.
@article{BASM_2015_3_a3,
     author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani},
     title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {50--59},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/}
}
TY  - JOUR
AU  - B. Venkateswarlu
AU  - D. Vamshee Krishna
AU  - N. Rani
TI  - Third Hankel determinant for the inverse of reciprocal of bounded turning functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 50
EP  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/
LA  - en
ID  - BASM_2015_3_a3
ER  - 
%0 Journal Article
%A B. Venkateswarlu
%A D. Vamshee Krishna
%A N. Rani
%T Third Hankel determinant for the inverse of reciprocal of bounded turning functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 50-59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/
%G en
%F BASM_2015_3_a3
B. Venkateswarlu; D. Vamshee Krishna; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59. http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/