Third Hankel determinant for the inverse of reciprocal of bounded turning functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we obtain the best possible upper bound to the third Hankel determinants for the functions belonging to the class of reciprocal of bounded turning functions using Toeplitz determinants.
@article{BASM_2015_3_a3,
author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani},
title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {50--59},
publisher = {mathdoc},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/}
}
TY - JOUR AU - B. Venkateswarlu AU - D. Vamshee Krishna AU - N. Rani TI - Third Hankel determinant for the inverse of reciprocal of bounded turning functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 50 EP - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/ LA - en ID - BASM_2015_3_a3 ER -
%0 Journal Article %A B. Venkateswarlu %A D. Vamshee Krishna %A N. Rani %T Third Hankel determinant for the inverse of reciprocal of bounded turning functions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 50-59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/ %G en %F BASM_2015_3_a3
B. Venkateswarlu; D. Vamshee Krishna; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59. http://geodesic.mathdoc.fr/item/BASM_2015_3_a3/