Certain classes of $p$-valent analytic functions with negative coefficients and $(\lambda,p)$-starlike with respect to certain points
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 35-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider classes $S_{s,\lambda}^*(p,\alpha,\beta)$, $S_{c,\lambda}^*(p,\alpha,\beta)$, and $S_{sc,\lambda}^*(p,\alpha,\beta)$ of p-valent analytic functions with negative coefficients in the unit disk. They are, respectively, $(\lambda,p)$-starlike with respect to symmetric points, $(\lambda,p)$-starlike with respect to conjugate points, and $(\lambda,p)$-starlike with respect to symmetric conjugate points. Necessary and sufficient coefficient conditions for functions $f$ belonging to these classes are obtained. Several properties such as the coefficient estimates, growth and distortion theorems, extreme points, radii of starlikeness, convexity, and integral operator are studied.
@article{BASM_2015_3_a2,
     author = {Adnan Ghazy Alamoush and Maslina Darus},
     title = {Certain classes of $p$-valent analytic functions with negative coefficients and $(\lambda,p)$-starlike with respect to certain points},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {35--49},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a2/}
}
TY  - JOUR
AU  - Adnan Ghazy Alamoush
AU  - Maslina Darus
TI  - Certain classes of $p$-valent analytic functions with negative coefficients and $(\lambda,p)$-starlike with respect to certain points
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 35
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_3_a2/
LA  - en
ID  - BASM_2015_3_a2
ER  - 
%0 Journal Article
%A Adnan Ghazy Alamoush
%A Maslina Darus
%T Certain classes of $p$-valent analytic functions with negative coefficients and $(\lambda,p)$-starlike with respect to certain points
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 35-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_3_a2/
%G en
%F BASM_2015_3_a2
Adnan Ghazy Alamoush; Maslina Darus. Certain classes of $p$-valent analytic functions with negative coefficients and $(\lambda,p)$-starlike with respect to certain points. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 35-49. http://geodesic.mathdoc.fr/item/BASM_2015_3_a2/

[1] Salagean G. S., Subclasses of univalent functions, Lecture Notes Math., 1013, Springer Verlag, Berlin, 1983, 362–372 | DOI | MR

[2] Orhan H., Kiziltunç H., “A generalization on subfamily of p-valent functions with negative coefficients”, Appl. Math. Comp., 155 (2004), 521–530 | DOI | MR | Zbl

[3] Sakaguchi K., “On certain univalent mapping”, J. Math. Soc. Japan, 11 (1959), 72–75 | DOI | MR | Zbl

[4] Sudharsan T. V., Balasubrahmananyam P., Subramanian K. G., “On functions starlike with respect to symmetric and conjugate points”, Taiwanese J. Math., 2 (1998), 57–68 | MR | Zbl

[5] Robertson M. S., “Applications of the subordination principle to univalent functions”, Pacific J. Math., 11 (1961), 315–324 | DOI | MR | Zbl

[6] Stankiewicz J., “Some remarks on functions starlike with respect to symmetric points”, Ann. Univ. Marie Curie Sklodowska, 19 (1965), 53–59 | MR | Zbl

[7] Wu Z., “On classes of Sakaguchi functions and Hadamard products”, Sci. Sinica Ser. A, 30 (1987), 128–135 | MR | Zbl

[8] Owa S., Wu Z., Ren F., “A note on certain subclass of Sakaguchi functions”, Bull. Soc. Roy. Liege, 57 (1988), 143–150 | MR

[9] El-Ashwah R. M., Thomas D. K., “Some subclasses of close-to-convex functions”, J. Ramanujan Math. Soc., 2 (1987), 86–100 | MR

[10] Chen M.-P., Wu Z.-R., Zou Z.-Z., “On functions $\alpha$-starlike with respect to symmetric conjugate points”, Jour. Math. Anal. App., 201 (1996), Art. No. 0238, 25–34 | DOI | MR | Zbl

[11] Sokól J., “Function starlike with respect to conjugate point”, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., 12 (1991), 53–64 | MR | Zbl

[12] Sokól J., “Some remarks on the class of functions starlike with respect to symmetric points”, Folia Scient. Univ. Tech. Resoviensis, 73 (1990), 79–89 | MR | Zbl

[13] Aouf M. K., El-Ashwah R. M., El-Deeb S. M., “Certain classes of univalent functions with negative coefficients and $n$-starlike with respect to certain points”, Matematiqki Vesnik, 62:3 (2010), 215–226 | MR | Zbl

[14] Halim S. A., Janteng A., Darus M., “Coefficient properties for classes with negative coefficient and starlike with respect to other points”, Proceeding of The 13th Math. Sci. Nat. Symposium, UUM, v. 2, 2005, 658–663

[15] Halim S. A., Janteng A., Darus M., “Classes with negative coefficient and starlike with respect to other points”, Int. Math. Forum, 2:46 (2007), 2261–2268 | MR | Zbl

[16] Dziok P., “On the convex combination of the Dziok-Srivastava operator”, Appl. Math. Comp., 188 (2006), 1214–1220 | DOI | MR