Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_3_a1, author = {Stanislav Ciubotaru}, title = {Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {14--34}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a1/} }
TY - JOUR AU - Stanislav Ciubotaru TI - Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 14 EP - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_3_a1/ LA - en ID - BASM_2015_3_a1 ER -
%0 Journal Article %A Stanislav Ciubotaru %T Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 14-34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_3_a1/ %G en %F BASM_2015_3_a1
Stanislav Ciubotaru. Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 14-34. http://geodesic.mathdoc.fr/item/BASM_2015_3_a1/