Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_3_a0, author = {G. Murugusundaramoorthy and T. Janani}, title = {On certain subclasses of analytic functions associated with generalized struve functions}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--13}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a0/} }
TY - JOUR AU - G. Murugusundaramoorthy AU - T. Janani TI - On certain subclasses of analytic functions associated with generalized struve functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 3 EP - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_3_a0/ LA - en ID - BASM_2015_3_a0 ER -
%0 Journal Article %A G. Murugusundaramoorthy %A T. Janani %T On certain subclasses of analytic functions associated with generalized struve functions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 3-13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_3_a0/ %G en %F BASM_2015_3_a0
G. Murugusundaramoorthy; T. Janani. On certain subclasses of analytic functions associated with generalized struve functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/BASM_2015_3_a0/
[1] Alexander J. W., “Functions which map the interior of the unit circle upon simple regions”, Annals of Mathematics, 17:1 (1915), 12–22 | DOI | MR | Zbl
[2] Altintas O., Owa S., “On subclasses of univalent functions with negative coefficients”, Pusan Kyǒngnam Math. J., 4 (1988), 41–56
[3] Baricz A., “Geometric properties of generalized Bessel functions”, Publ. Math. Debrecen, 73:1–2 (2008), 155–178 | MR | Zbl
[4] Baricz A., “Geometric properties of generalized Bessel functions of complex order”, Mathematica, 48(71):1 (2006), 13–18 | MR | Zbl
[5] Baricz A., Generalized Bessel functions of the first kind, PhD thesis, Babes-Bolyai University, Cluj-Napoca, 2008
[6] Baricz A., Generalized Bessel functions of the first kind, Lecture Notes in Math., 1994, Springer-Verlag, 2010 | DOI | MR | Zbl
[7] Bharati R., Parvatham R., Swaminathan A., “On subclasses of uniformly convex functions and corresponding class of starlike functions”, Tamkang J. Math., 26:1 (1997), 17–32 | MR
[8] Caplinger T. R., Causey W. M., “A class of univalent functions”, Proc. Amer. Math. Soc., 39 (1973), 357–361 | DOI | MR | Zbl
[9] Cho N. E., Woo S. Y., Owa S., “Uniform convexity properties for hypergeometric functions”, Fract. Cal. Appl. Anal., 5:3 (2002), 303–313 | MR | Zbl
[10] de Branges L., “A proof of the Bierberbach conjucture”, Acta. Math., 154 (1985), 137–152 | DOI | MR | Zbl
[11] Dixit K. K., Pal S. K., “On a class of univalent functions related to complex order”, Indian J. Pure Appl. Math., 26:9 (1995), 889–896 | MR | Zbl
[12] Goodman A. W., “On uniformly convex functions”, Ann. Polon. Math., 56 (1991), 87–92 | MR | Zbl
[13] Goodman A. W., “On uniformly starlike functions”, J. Math. Anal. Appl., 155 (1991), 364–370 | DOI | MR | Zbl
[14] Kanas S., Wisniowska A., “Conic regions and $k$-uniform convexity”, J. Comput. Appl. Math., 105 (1999), 327–336 | DOI | MR | Zbl
[15] Merkes E., Scott B. T., “Starlike hypergeometric functions”, Proc. Amer. Math. Soc., 12 (1961), 885–888 | DOI | MR | Zbl
[16] Mondal S. R., Swaminathan A., “Geometric properties of Generalized Bessel functions”, Bull. Malays. Math. Sci. Soc., 35:1 (2012), 179–194 | MR | Zbl
[17] Mostafa A. O., “A study on starlike and convex properties for hypergeometric functions”, Journal of Inequalities in Pure and Applied Mathematics, 10:3 (2009), Art. 87, 8 pp. | MR
[18] Murugusundaramoorthy G., Magesh N., “On certain subclasses of analytic functions associated with hypergeometric functions”, Appl. Math. Letters, 24 (2011), 494–500 | DOI | MR | Zbl
[19] Orhan H., Yagmur N., “Geometric properties of generalized Struve functions”, The International Congress in Honour of Professor Hari M. Srivastava, Bursa, Turkey, August 2012
[20] Padmanabhan K. S., “On a certain class of functions whose derivatives have a positive real part in the unit disc”, Ann. Polon. Math., 23 (1970), 73–81 | MR | Zbl
[21] Rønning F., “Uniformly convex functions and a corresponding class of starlike functions”, Proc. Amer. Math. Soc., 118 (1993), 189–196 | DOI | MR
[22] Rønning F., “Integral representations for bounded starlike functions”, Annal. Polon. Math., 60 (1995), 289–297 | MR
[23] Silverman H., “Univalent functions with negative coefficients”, Proc. Amer. Math. Soc., 51 (1975), 109–116 | DOI | MR | Zbl
[24] Silverman H., “Starlike and convexity properties for hypergeometric functions”, J. Math. Anal. Appl., 172 (1993), 574–581 | DOI | MR | Zbl
[25] Srivastava H. M., Murugusundaramoorthy G., Janani T., Uniformly starlike functions and uniformly convex functions associated with the Struve function (to appear)
[26] Srivastava H. M., Murugusundaramoorthy G., Sivasubramanian S., “Hypergeometric functions in the parabolic starlike and uniformly convex domains”, Integral Transforms Spec. Funct., 18 (2007), 511–520 | DOI | MR | Zbl
[27] Subramanian K. G., Murugusundaramoorthy G., Balasubrahmanyam P., Silverman H., “Subclasses of uniformly convex and uniformly starlike functions”, Math. Japonica, 42:3 (1995), 517–522 | MR | Zbl
[28] Subramanian K. G., Sudharsan T. V., Balasubrahmanyam P., Silverman H., “Classes of uniformly starlike functions”, Publ. Math. Debrecen, 53:3–4 (1998), 309–315 | MR | Zbl
[29] Swaminathan A., “Certain suffienct conditions on Gaussian hypergeometric functions”, Journal of Inequalities in Pure and Applied Mathematics, 5:4 (2004), Art. 83, 10 pp. | MR
[30] Yagmur N., Orhan H., “Starlikeness and convexity of generalized Struve functions”, Abstract and Appl. Anal., 2013 (2013), Article ID 954513, 6 pp. | DOI | MR