On LCA groups with locally compact rings of continuous endomorphisms.~II
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 96-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain classes $\mathcal S$ of locally compact abelian groups, we determine the groups $X\in\mathcal S$ with the property that the ring $E(X)$ of continuous endomorphisms of $X$ is locally compact in the compact-open topology.
@article{BASM_2015_2_a8,
     author = {Valeriu Popa},
     title = {On {LCA} groups with locally compact rings of continuous {endomorphisms.~II}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {96--113},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a8/}
}
TY  - JOUR
AU  - Valeriu Popa
TI  - On LCA groups with locally compact rings of continuous endomorphisms.~II
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 96
EP  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_2_a8/
LA  - en
ID  - BASM_2015_2_a8
ER  - 
%0 Journal Article
%A Valeriu Popa
%T On LCA groups with locally compact rings of continuous endomorphisms.~II
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 96-113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_2_a8/
%G en
%F BASM_2015_2_a8
Valeriu Popa. On LCA groups with locally compact rings of continuous endomorphisms.~II. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 96-113. http://geodesic.mathdoc.fr/item/BASM_2015_2_a8/

[1] Armacost D. L., The structure of locally compact abelian groups, Pure and Applied Mathematics Series, 68, Marcel Dekker, ed., New York, 1981 | MR | Zbl

[2] Bourbaki N., Topologie generale. Chapter III–VIII. Éléments de mathematique, Nauka, Moscow, 1969 (in Russian)

[3] Braconnier J., “Sur les groupes topologiques localement compact”, J. Math. Pures Apl., 27:9 (1948), 1–85 | MR | Zbl

[4] Charin V., “On groups of finite rank, I”, Ukr. Math. J., 16:2 (1964), 212–219 | Zbl

[5] Charin V., “On groups of finite rank, II”, Ukr. Math. J., 18:3 (1966), 85–96 | Zbl

[6] Dikranjan D., Prodanov I., Stoyanov L., Topological groups, Pure and Applied Mathematics Series, 130, Marcel Dekker, ed., New York–Basel, 1990 | MR | Zbl

[7] Engelking R., General topology, Warszawa, 1977 | MR

[8] Fuchs L., Infinite abelian groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl

[9] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 1, Nauka, Moscow, 1975 (in Russian) | MR

[10] Levin M., “The automorphism group of a locally compact abelian group”, Acta Math., 127 (1971), 259–278 | DOI | MR | Zbl

[11] Moskowitz M., “Homological algebra in locally compact abelian groups”, Trans. Amer. Math. Sos., 127 (1967), 361–404 | DOI | MR | Zbl

[12] Orsatti A., Introduzione ai gruppi abeliani astratti e topologici, Pitagora Editrice, Bologna, 1979 | Zbl

[13] Plaumann P., “Automorphism groups of locally compact abelian groups”, Lecture Notes Math., 874, 1981, 272–282 | DOI | MR | Zbl

[14] Popa V., “LCA groups with topologically simple ring of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 1998, no. 2(27), 39–49 | MR | Zbl

[15] Popa V., “On the connected component of a homomorphism group”, Éditios de l'Academie Roumaine, Mathematica, 41(64):1 (1999), 69–83 | MR | Zbl

[16] Popa V., “On LCA groups with compact rings of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2000, no. 1(32), 17–32 | MR

[17] Popa V., “On LCA groups with locally compact rings of continuous endomorphisms, I”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2014, no. 3(76), 65–79 | MR