Solvability of a~nonlinear integral equation arising in kinetic theory
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 36-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the question of solvability of an Urysohn type nonlinear integral equation arising in kinetic theory of gases has been studied. We prove the existence of a positive and bounded solution and also suggest an approach for the construction of a solution. We also show that there is a qualitative difference between solutions in the linear and nonlinear cases. In the nonlinear case the solution is a positive and bounded function, while the corresponding linear equation has an alternating solution, which possesses linear growth at infinity.
@article{BASM_2015_2_a3,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {Solvability of a~nonlinear integral equation arising in kinetic theory},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {36--41},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - Solvability of a~nonlinear integral equation arising in kinetic theory
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 36
EP  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/
LA  - en
ID  - BASM_2015_2_a3
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T Solvability of a~nonlinear integral equation arising in kinetic theory
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 36-41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/
%G en
%F BASM_2015_2_a3
A. Kh. Khachatryan; Kh. A. Khachatryan. Solvability of a~nonlinear integral equation arising in kinetic theory. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 36-41. http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/

[1] Kogan M. N., Rarefied Gas Dynamics, Springer, 1969

[2] Cercignani C., The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988 | DOI | MR | Zbl

[3] Khachatryan A. Kh., Khachatryan Kh. A., “Qualitative difference between solutions for a model Boltzmann equation in the linear and nonlinear cases”, Theoretical and Mathematical Physics, 172 (2012), 1315–1320 | DOI | MR | Zbl

[4] Engibaryan N. B., Khachatryan A. Kh., “Some convolution-type integral equations in kinetic theory”, Comp. Math. and Math. Phys., 38 (1998), 452–467 | MR | Zbl

[5] Arabadzhyan L. G., Engibaryan N. B., “Convolution equations and nonlinear functional equations”, Journal of Soviet Mathematics, 36 (1984), 745–791 | DOI | MR

[6] Gevorkyan G. G. Engibaryan N. B., “New theorems for the integral renewal equation”, Journal of Contemporary Math. Analysis, 32 (1997), 2–16 | MR | Zbl