Solvability of a nonlinear integral equation arising in kinetic theory
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 36-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the question of solvability of an Urysohn type nonlinear integral equation arising in kinetic theory of gases has been studied. We prove the existence of a positive and bounded solution and also suggest an approach for the construction of a solution. We also show that there is a qualitative difference between solutions in the linear and nonlinear cases. In the nonlinear case the solution is a positive and bounded function, while the corresponding linear equation has an alternating solution, which possesses linear growth at infinity.
@article{BASM_2015_2_a3,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {Solvability of a~nonlinear integral equation arising in kinetic theory},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {36--41},
     year = {2015},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - Solvability of a nonlinear integral equation arising in kinetic theory
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 36
EP  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/
LA  - en
ID  - BASM_2015_2_a3
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T Solvability of a nonlinear integral equation arising in kinetic theory
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 36-41
%N 2
%U http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/
%G en
%F BASM_2015_2_a3
A. Kh. Khachatryan; Kh. A. Khachatryan. Solvability of a nonlinear integral equation arising in kinetic theory. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 36-41. http://geodesic.mathdoc.fr/item/BASM_2015_2_a3/

[1] Kogan M. N., Rarefied Gas Dynamics, Springer, 1969

[2] Cercignani C., The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988 | DOI | MR | Zbl

[3] Khachatryan A. Kh., Khachatryan Kh. A., “Qualitative difference between solutions for a model Boltzmann equation in the linear and nonlinear cases”, Theoretical and Mathematical Physics, 172 (2012), 1315–1320 | DOI | MR | Zbl

[4] Engibaryan N. B., Khachatryan A. Kh., “Some convolution-type integral equations in kinetic theory”, Comp. Math. and Math. Phys., 38 (1998), 452–467 | MR | Zbl

[5] Arabadzhyan L. G., Engibaryan N. B., “Convolution equations and nonlinear functional equations”, Journal of Soviet Mathematics, 36 (1984), 745–791 | DOI | MR

[6] Gevorkyan G. G. Engibaryan N. B., “New theorems for the integral renewal equation”, Journal of Contemporary Math. Analysis, 32 (1997), 2–16 | MR | Zbl