Primary decomposition of general graded structures
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 87-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss the primary decomposition in the case of general graded modules – moduloids, a generalization of already done work for general graded rings – anneids. These structures, introduced by Marc Krasner are more general than graded structures of Bourbaki since they do not require the associativity nor the commutativity nor the unitarity in the set of grades. After proving the existence and uniqueness of primary decomposition of moduloids, we breafly turn our attention to Krull's Theorem and to the existence of the primary decomposition of Krasner–Vuković paragraded rings.
@article{BASM_2015_1_a4,
     author = {Emil Ili\'c-Georgijevi\'c and Mirjana Vukovi\'c},
     title = {Primary decomposition of general graded structures},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {87--96},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_1_a4/}
}
TY  - JOUR
AU  - Emil Ilić-Georgijević
AU  - Mirjana Vuković
TI  - Primary decomposition of general graded structures
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 87
EP  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_1_a4/
LA  - en
ID  - BASM_2015_1_a4
ER  - 
%0 Journal Article
%A Emil Ilić-Georgijević
%A Mirjana Vuković
%T Primary decomposition of general graded structures
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 87-96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_1_a4/
%G en
%F BASM_2015_1_a4
Emil Ilić-Georgijević; Mirjana Vuković. Primary decomposition of general graded structures. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 87-96. http://geodesic.mathdoc.fr/item/BASM_2015_1_a4/