$l_p(R)$-equivalence of topological spaces and topological modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 20-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a topological ring and $E$ be a unitary topological $R$-module. Denote by $C_p(X,E)$ the class of all continuous mappings of $X$ into $E$ in the topology of pointwise convergence. The spaces $X$ and $Y$ are called $l_p(E)$-equivalent if the topological $R$-modules $C_p(X,E)$ and $C_p(Y,E)$ are topological isomorphisms. Some conditions under which the topological property $\mathcal P$ is preserved by the $l_p(E)$-equivalence (Theorems 8–11) are given.
@article{BASM_2015_1_a2,
     author = {Mitrofan M. Choban and Radu N. Dumbr\u{a}veanu},
     title = {$l_p(R)$-equivalence of topological spaces and topological modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {20--47},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/}
}
TY  - JOUR
AU  - Mitrofan M. Choban
AU  - Radu N. Dumbrăveanu
TI  - $l_p(R)$-equivalence of topological spaces and topological modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 20
EP  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/
LA  - en
ID  - BASM_2015_1_a2
ER  - 
%0 Journal Article
%A Mitrofan M. Choban
%A Radu N. Dumbrăveanu
%T $l_p(R)$-equivalence of topological spaces and topological modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 20-47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/
%G en
%F BASM_2015_1_a2
Mitrofan M. Choban; Radu N. Dumbrăveanu. $l_p(R)$-equivalence of topological spaces and topological modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 20-47. http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/