$l_p(R)$-equivalence of topological spaces and topological modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 20-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a topological ring and $E$ be a unitary topological $R$-module. Denote by $C_p(X,E)$ the class of all continuous mappings of $X$ into $E$ in the topology of pointwise convergence. The spaces $X$ and $Y$ are called $l_p(E)$-equivalent if the topological $R$-modules $C_p(X,E)$ and $C_p(Y,E)$ are topological isomorphisms. Some conditions under which the topological property $\mathcal P$ is preserved by the $l_p(E)$-equivalence (Theorems 8–11) are given.
@article{BASM_2015_1_a2,
author = {Mitrofan M. Choban and Radu N. Dumbr\u{a}veanu},
title = {$l_p(R)$-equivalence of topological spaces and topological modules},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {20--47},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/}
}
TY - JOUR AU - Mitrofan M. Choban AU - Radu N. Dumbrăveanu TI - $l_p(R)$-equivalence of topological spaces and topological modules JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 20 EP - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/ LA - en ID - BASM_2015_1_a2 ER -
%0 Journal Article %A Mitrofan M. Choban %A Radu N. Dumbrăveanu %T $l_p(R)$-equivalence of topological spaces and topological modules %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 20-47 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/ %G en %F BASM_2015_1_a2
Mitrofan M. Choban; Radu N. Dumbrăveanu. $l_p(R)$-equivalence of topological spaces and topological modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 20-47. http://geodesic.mathdoc.fr/item/BASM_2015_1_a2/