Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of solutions to the problem $$ \left\{ \begin{array}{l} \varepsilon u''_\varepsilon(t)+u'_\varepsilon(t)+A(t)u _\varepsilon(t)=f_\varepsilon(t),\quad t\in(0,T),\\ u_\varepsilon(0)=u_{0\varepsilon},\quad u'_\varepsilon(0)=u_{1\varepsilon}, \end{array} \right. $$ in the Hilbert space $\mathrm H$ as $\varepsilon\to0$, where $A(t)$, $t\in(0,\infty)$, is a family of linear self-adjoint operators.
@article{BASM_2014_3_a5,
     author = {Andrei Perjan and Galina Rusu},
     title = {Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {49--64},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/}
}
TY  - JOUR
AU  - Andrei Perjan
AU  - Galina Rusu
TI  - Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 49
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/
LA  - en
ID  - BASM_2014_3_a5
ER  - 
%0 Journal Article
%A Andrei Perjan
%A Galina Rusu
%T Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 49-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/
%G en
%F BASM_2014_3_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64. http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/