Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of solutions to the problem
$$
\left\{
\begin{array}{l}
\varepsilon u''_\varepsilon(t)+u'_\varepsilon(t)+A(t)u _\varepsilon(t)=f_\varepsilon(t),\quad t\in(0,T),\\
u_\varepsilon(0)=u_{0\varepsilon},\quad u'_\varepsilon(0)=u_{1\varepsilon},
\end{array}
\right.
$$
in the Hilbert space $\mathrm H$ as $\varepsilon\to0$, where $A(t)$, $t\in(0,\infty)$, is a family of linear self-adjoint operators.
@article{BASM_2014_3_a5,
author = {Andrei Perjan and Galina Rusu},
title = {Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {49--64},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/}
}
TY - JOUR AU - Andrei Perjan AU - Galina Rusu TI - Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 49 EP - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/ LA - en ID - BASM_2014_3_a5 ER -
%0 Journal Article %A Andrei Perjan %A Galina Rusu %T Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 49-64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/ %G en %F BASM_2014_3_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64. http://geodesic.mathdoc.fr/item/BASM_2014_3_a5/