Closure operators in the categories of modules. Part~IV (Relations between the operators and preradicals)
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work (which is a continuation of [1–3]) the relations between the class $\mathbb{CO}$ of the closure operators of a module category $R$-Mod and the class $\mathbb{PR}$ of preradicals of this category are investigated. The transition from $\mathbb{CO}$ to $\mathbb{PR}$ and backwards is defined by three mappings $\Phi\colon \mathbb{CO\to PR}$ and $\Psi_1,\Psi_2\colon\mathbb{CO\to PR}$. The properties of these mappings are studied. Some monotone bijections are obtained between the preradicals of different types (idempotent, radical, hereditary, cohereditary, etc.) of $\mathbb{PR}$ and the closure operators of $\mathbb{CO}$ with special properties (weakly hereditary, idempotent, hereditary, maximal, minimal, cohereditary, etc.).
@article{BASM_2014_3_a1,
     author = {A. I. Kashu},
     title = {Closure operators in the categories of modules. {Part~IV} {(Relations} between the operators and preradicals)},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {13--22},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_3_a1/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Closure operators in the categories of modules. Part~IV (Relations between the operators and preradicals)
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 13
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_3_a1/
LA  - en
ID  - BASM_2014_3_a1
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Closure operators in the categories of modules. Part~IV (Relations between the operators and preradicals)
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 13-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_3_a1/
%G en
%F BASM_2014_3_a1
A. I. Kashu. Closure operators in the categories of modules. Part~IV (Relations between the operators and preradicals). Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 13-22. http://geodesic.mathdoc.fr/item/BASM_2014_3_a1/

[1] Kashu A. I., “Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)”, Algebra and Discrete Mathematics, 15:2 (2013), 213–228 | MR

[2] Kashu A. I., “Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)”, Algebra and Discrete Mathematics, 16:1 (2013), 81–95 | MR

[3] Kashu A. I., “Closure operators in the categories of modules. Part III (Operations in $\mathbb{CO}$ and their properties)”, Bul. Acad. Ştiinţe. Repub. Moldova, Mat., 2014, no. 1(74), 90–100 | MR | Zbl

[4] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[5] Golan J. S., Torsion theories, Longman Scientific and Technical, New York, 1976 | MR

[6] Kashu A. I., Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[7] Dikranjan D., Giuli E., “Factorizations, injectivity and compactness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[8] Dikranjan D., Giuli E., “Closure operators. I”, Topology and its Applications, 27 (1987), 129–143 | DOI | MR | Zbl

[9] Dikranjan D., Tholen W., Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl