Compact global attractors of non-autonomous gradient-like dynamical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 85-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the asymptotic behavior of gradient-like non-autonomous dynamical systems. We give a description of the structure of the Levinson center (maximal compact invariant set) for this class of systems.
@article{BASM_2014_2_a9,
     author = {David Cheban},
     title = {Compact global attractors of non-autonomous gradient-like dynamical systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {85--101},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/}
}
TY  - JOUR
AU  - David Cheban
TI  - Compact global attractors of non-autonomous gradient-like dynamical systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 85
EP  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/
LA  - en
ID  - BASM_2014_2_a9
ER  - 
%0 Journal Article
%A David Cheban
%T Compact global attractors of non-autonomous gradient-like dynamical systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 85-101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/
%G en
%F BASM_2014_2_a9
David Cheban. Compact global attractors of non-autonomous gradient-like dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 85-101. http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/

[1] Auslander J., Seibert P., “Prolongations and stability in dynamical systems”, Ann. Inst. Fourier (Grenoble), 14 (1964), 237–268 | DOI | MR | Zbl

[2] Babin A. V., Vishik M. I., “Regular Attractor of Semi-Groups and Evolutional Equations”, Journal Math. Pures et Appl., 62 (1983), 172–189 | MR

[3] North-Holland, Amsterdam, 1992 | MR | Zbl | Zbl

[4] Bhatia N. P., Szegö G. P., Stability Theory of Dynamical Systems, Lecture Notes in Mathematics, 161, Springer, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[5] Bondarchuk V. S., Dobrynskii V. A., “Dynamical Systems with Hyperbolic Center”, Functional and Differential-Difference Equations, Institute of Mathematics, Academy of Sciences of Ukraine, 1974, 13–40 (in Russian) | MR

[6] Bronsteyn I. U., Extensions of Minimal Transformation Group, Noordhoff, 1979

[7] Bronstein I. U., Nonautonomous Dynamical Systems, Ştiintsa, Chişinău, 1984 (in Russian)

[8] Bronstein I. U., Burdaev B. P., “Chain Recurrence and Extensions of Dynamical Systems”, Mat. Issled., 55 (1980), 3–11 (in Russian) | MR

[9] Carvalho Alexandre N., Langa Jose A., Robinson James C., Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences, 182, Springer, New York, 2013 | DOI | MR | Zbl

[10] Cheban David N., Global Attractors of Nonautonomous Dissipative Dynamical Systemst, Interdisciplinary Mathematical Sciences, 1, World Scientific, River Edge, NJ, 2004, xxvi+502 pp. | MR | Zbl

[11] Cheban David N., Asymptotically Almost Periodic Solutions of Differential Equations, Hindawi Puidblishing Corporation, 2009, xvii+186 pp. | MR | Zbl

[12] Cheban David N., Global Attractors of Set-Valued Dynamical and Control Systems, Nova Science Publishers Inc., New York, 2010, xvii+269 pp.

[13] Choi S. K., Chu C. K., Park J. S., “Chain Recurrent Sets for Flows on Non-Compact Spaces”, J. Dyn. Diff. Equ., 14:4 (2002), 597–610 | DOI | MR

[14] Conley C., Isolated Invariant Sets and the Morse Index, Region. Conf., Ser. Math., 38, Am. Math. Soc., Providence, RI, 1978 | MR | Zbl

[15] Conley C., “The gradient structure of a flows. I”, Ergodic Theory Dynamical Systems, 8 (1988), 11–26 | DOI | MR | Zbl

[16] Hale J. K., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[17] Hale J. K., “Stability and Gradient Dynamical Systems”, Rev. Math. Complut., 17:10 (2004), 7–57 | MR | Zbl

[18] Hirsch M. W., Smith H. L., Zhao X.-Q., “Chain Transitivity, Attractivity, and Strong Repellors for Semidynamical Systems”, J. Dyn. Diff. Equ., 13:1 (2001), 107–131 | DOI | MR | Zbl

[19] Hurley Mike, “Chain recurrence, semiflows, and gradients”, Journal of Dynamics and Differential Equations, 7:3 (1995), 437–456 | DOI | MR | Zbl

[20] Levitan B. M., Zhikov V. V., Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[21] Pata Vittorino, “Gradient systems of closed operators”, Central European Journal of Mathematics, 7:3 (2009), 487–492 | DOI | MR | Zbl

[22] Patrao M., “Morse Decomposition of Semiflows on Topologicl Spaces”, Journal of Dinamics and Differential Equations, 19:1 (2007), 215–241 | MR

[23] Raugel G., “Global Attractors in Partial Differential Equations”, Handbook of Dynamical Systems, Chapter VII, v. 2, ed. B. Fiedler, Elsevier, 2002, 885–982 | DOI | MR | Zbl

[24] Robinson C., Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1995 | MR | Zbl

[25] Sacker R. J., Sell G. R., “Finite Extensions of Minimal Transformation Groups”, Memoirs of the American Math. Soc., 190 (1974), 325–334 | DOI | MR | Zbl

[26] Sacker R. J., Sell G. R., Lifting Properties in Skew-Product Flows with Applications to Differential Equations, Memoirs of the American Math. Soc., 190, Providence, R.I., 1977 | MR | Zbl

[27] Sharkovsky A. N., Dobrynsky V. A., “Nonwandering points of dynamical systems”, Dynamical Systems and Stability Problems of the Solutions to Differential Equations, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1973, 165–174 (in Russian) | MR

[28] Introduction to Topological Dynamics, Noordhoff, Leyden, 1975 | MR | MR | Zbl

[29] Stuart A., Humphries A. R., Dynamical Systems and Numerical Analysis, CUP, 1996