Compact global attractors of non-autonomous gradient-like dynamical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 85-101

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the asymptotic behavior of gradient-like non-autonomous dynamical systems. We give a description of the structure of the Levinson center (maximal compact invariant set) for this class of systems.
@article{BASM_2014_2_a9,
     author = {David Cheban},
     title = {Compact global attractors of non-autonomous gradient-like dynamical systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {85--101},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/}
}
TY  - JOUR
AU  - David Cheban
TI  - Compact global attractors of non-autonomous gradient-like dynamical systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 85
EP  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/
LA  - en
ID  - BASM_2014_2_a9
ER  - 
%0 Journal Article
%A David Cheban
%T Compact global attractors of non-autonomous gradient-like dynamical systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 85-101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/
%G en
%F BASM_2014_2_a9
David Cheban. Compact global attractors of non-autonomous gradient-like dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 85-101. http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/