Compact global attractors of non-autonomous gradient-like dynamical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 85-101
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the asymptotic behavior of gradient-like non-autonomous dynamical systems. We give a description of the structure of the Levinson center (maximal compact invariant set) for this class of systems.
@article{BASM_2014_2_a9,
author = {David Cheban},
title = {Compact global attractors of non-autonomous gradient-like dynamical systems},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {85--101},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/}
}
TY - JOUR AU - David Cheban TI - Compact global attractors of non-autonomous gradient-like dynamical systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 85 EP - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/ LA - en ID - BASM_2014_2_a9 ER -
David Cheban. Compact global attractors of non-autonomous gradient-like dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 85-101. http://geodesic.mathdoc.fr/item/BASM_2014_2_a9/