A~semi-isometric isomorphism on a~ring of matrices
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 74-84
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(R,\xi)$ be a pseudonormed ring and $R_n$ be a ring of matrices over the ring $R$. We prove that if $1\leq\gamma,\sigma\leq\infty$ and $\frac 1\gamma+\frac1\sigma\geq1$, then the function $\eta_{\xi,\gamma,\sigma}$ is a pseudonorm on the ring $R_n$. Let now $\varphi\colon(R,\xi)\to(\overline R,\overline\xi)$ be a semi-isometric isomorphism of pseudonormed rings. We prove that $\Phi\colon(R_n,\eta_{\xi,\gamma,\sigma})\to(\overline R_n,\eta_{\overline\xi,\gamma,\sigma})$ is a semi-isometric isomorphism too for all $1\leq\gamma,\sigma\leq\infty$ such that $\frac1\gamma+\frac1\sigma\ge1$.
@article{BASM_2014_2_a8,
author = {Svetlana Aleschenko},
title = {A~semi-isometric isomorphism on a~ring of matrices},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {74--84},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a8/}
}
Svetlana Aleschenko. A~semi-isometric isomorphism on a~ring of matrices. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 74-84. http://geodesic.mathdoc.fr/item/BASM_2014_2_a8/