Max-Erlang and Min-Erlang power series distributions as two new families of lifetime distribution
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution of the minimum and maximum of a random number of independent, identically Erlang distributed random variables are studied. Some particular cases of such kind of lifetime distributions are discussed too.
@article{BASM_2014_2_a7,
     author = {Alexei Leahu and Bogdan Gheorghe Munteanu and Sergiu Cataranciuc},
     title = {Max-Erlang and {Min-Erlang} power series distributions as two new families of lifetime distribution},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {60--73},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a7/}
}
TY  - JOUR
AU  - Alexei Leahu
AU  - Bogdan Gheorghe Munteanu
AU  - Sergiu Cataranciuc
TI  - Max-Erlang and Min-Erlang power series distributions as two new families of lifetime distribution
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 60
EP  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a7/
LA  - en
ID  - BASM_2014_2_a7
ER  - 
%0 Journal Article
%A Alexei Leahu
%A Bogdan Gheorghe Munteanu
%A Sergiu Cataranciuc
%T Max-Erlang and Min-Erlang power series distributions as two new families of lifetime distribution
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 60-73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a7/
%G en
%F BASM_2014_2_a7
Alexei Leahu; Bogdan Gheorghe Munteanu; Sergiu Cataranciuc. Max-Erlang and Min-Erlang power series distributions as two new families of lifetime distribution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 60-73. http://geodesic.mathdoc.fr/item/BASM_2014_2_a7/

[1] Adamidis K., Loukas S., “A Lifetime Distribution with Decreasing Failure Rate”, Statistics and Probability Letters, 39:1 (1998), 35–42 | DOI | MR | Zbl

[2] Adamidis K., Dimitrakopoulou T., Loukas S., “On an extension of the exponential-geometric distribution”, Statistics and Probability Letters, 73:3 (2005), 259–269 | DOI | MR | Zbl

[3] Barreto-Souza W., Cribari-Neto F., “A generalization of the exponential-Poisson distribution”, Statistics and Probability Letters, 79 (2009), 2493–2500 | DOI | MR | Zbl

[4] Barreto-Souza W., Morais A. L., Cordeiro G. M., “The Weibull-geometric distribution”, Journal of Statistical Computation and Simulation, 81:5 (2011), 645–657 | DOI | MR | Zbl

[5] Cancho V., Louzada F., Barriga G., “The Poisson-Exponential Lifetime Distribution”, Computational Statistics and Data Analysis, 55:8 (2011), 677–686 | DOI | MR | Zbl

[6] Chahkandi M., Ganjali M., “On some lifetime distributions with decreasing failure rate”, Computational Statistics and Data Analysis, 53:12 (2009), 4433–4440 | DOI | MR | Zbl

[7] Cordeiro G., Rodriques J., Castro M., “The exponential com-Poisson distribution”, Statistical papers, 53:3 (2012), 653–664 | DOI | MR | Zbl

[8] Flores J., Borges P., Cancho V. G., “The complementary exponential power series distribution”, Braz. J. Probab. Stat., 27:4 (2013), 565–584 | DOI | MR

[9] Johnson N. L., Kemp A. W., Kotz S., Univariate Discrete Distribution, New Jersey, 2005 | MR

[10] Kus C., “A New Lifetime Distribution Distributions”, Computational Statistics and Data Analysis, 51:9 (2007), 4497–4509 | DOI | MR | Zbl

[11] Leahu A., Lupu C. E., “On the Binomially Mixed Exponential Lifetime Distributions”, Proceedings of the Seventh Workshop on Mathematical Modelling of Environmental and Life Sciences Problems, Bucharest, 2010, 191–196

[12] Leahu A., Munteanu B. Gh., Cataranciuc S., “On the lifetime as the maximum or minimum of the sample with power series distributed size”, Romai J., 9:2 (2013), 119–128 | MR | Zbl

[13] Lehmann E. L., Testing Statistical Hypotheses, second edition, Wiley, New York, 1986 | MR | Zbl

[14] Louzada F., Roman M., Cancho V., “The Complementary Exponential Geometric Distribution: Model, Properties and a Comparison with Its Counterpart”, Computational Statistics and Data Analysis, 55:8 (2011), 2516–2524 | DOI | MR

[15] Louzada F., Bereta M. P. E., Franco M. A. P., “On the Distribution of the Minimum or Maximum of a Random Number of i. i. d. Lifetime Random Variables”, Applied Mathematics, 3:4 (2012), 350–353 | DOI | MR

[16] Morais A. L., Barreto-Souza W., “A Compound Class of Weibull and Power Series Distributions”, Computational Statistics and Data Analysis, 55:3 (2011), 1410–1425 | DOI | MR

[17] Munteanu B. Gh., “The Max-Weibull Power Series Distribution”, Annals of Oradea University, Fasc. Math., 21:2 (2014), 143–149

[18] Silva R. B., Barreto-Souza W., Cordeiro G. M., “A new distribution with decreasing, increasing and upside-down bathtub failure rate”, Computational Statistics and Data Analysis, 54:4 (2010), 935–944 | DOI | MR | Zbl

[19] Tahmasbi R., Rezaei S., “A Two-Parameter Life-Time Distribution with Decreasing Failure Rate”, Computational Statistics and Data Analysis, 52:8 (2008), 3889–3901 | DOI | MR | Zbl