Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 29-35
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\phi$ be an analytic self-map of the open unit disk $\mathbb D$ in the complex plane. Such a map induces through composition a linear composition operator $C_\phi\colon f\mapsto f\circ\phi$. We are interested in the combination of $C_\phi$ weith the differentiation operator $D$, that is in the operator $DC_\phi\colon f\mapsto\phi'\cdot(f\circ\phi)$ acting between weighted Bergman spaces and weighted Banach spaces of holomorphic functions.
@article{BASM_2014_2_a3,
author = {Elke Wolf},
title = {Composition followed by differentiation between weighted {Bergman} spaces and weighted {Banach} spaces of holomorphic functions},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {29--35},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a3/}
}
TY - JOUR AU - Elke Wolf TI - Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 29 EP - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_2_a3/ LA - en ID - BASM_2014_2_a3 ER -
%0 Journal Article %A Elke Wolf %T Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 29-35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_2_a3/ %G en %F BASM_2014_2_a3
Elke Wolf. Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 29-35. http://geodesic.mathdoc.fr/item/BASM_2014_2_a3/