One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 102-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new class of cubic systems with invariant lines of total multiplicity 9, including the line at infinity endowed with its own multiplicity. This class is different from the 23 classes included in the classification given in {4} by J. Llibre and N. Vulpe.
@article{BASM_2014_2_a10,
     author = {Cristina Bujac},
     title = {One new class of cubic systems with maximum number of invariant lines omitted in the classification of {J.~Llibre} and {N.~Vulpe}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {102--105},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/}
}
TY  - JOUR
AU  - Cristina Bujac
TI  - One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 102
EP  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/
LA  - en
ID  - BASM_2014_2_a10
ER  - 
%0 Journal Article
%A Cristina Bujac
%T One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 102-105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/
%G en
%F BASM_2014_2_a10
Cristina Bujac. One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 102-105. http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/

[1] Artes J., Grünbaum D., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific Journal of Mathematics, 184 (1998), 317–327 | DOI | MR

[2] Bujac C., Vulpe N., Cubic systems with invariant lines of total multiplicity eight and with four distinct infinite singularities, Preprint No 10, Universitat Autónoma de Barcelona, 2013, 51 pp.

[3] Bujac C., Vulpe N., Cubic systems with invariant lines of total multiplicity eight and with three distinct infinite singularities, Preprint No 3331, CRM, Montreal, December, 2013, 30 pp.

[4] Llibre J., Vulpe N. I., “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 38 (2006), 1301–1373 | DOI | MR

[5] Schlomiuk D., Vulpe N., “Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines”, Journal of Fixed Point Theory and Applications, 8:1 (2010), 177–245 | DOI | MR | Zbl

[6] Sibirskii K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from the Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR

[7] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, “Shtiintsa”, Kishinev, 1986 (in Russian) | MR | Zbl