Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_2_a10, author = {Cristina Bujac}, title = {One new class of cubic systems with maximum number of invariant lines omitted in the classification of {J.~Llibre} and {N.~Vulpe}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {102--105}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/} }
TY - JOUR AU - Cristina Bujac TI - One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 102 EP - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/ LA - en ID - BASM_2014_2_a10 ER -
%0 Journal Article %A Cristina Bujac %T One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 102-105 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/ %G en %F BASM_2014_2_a10
Cristina Bujac. One new class of cubic systems with maximum number of invariant lines omitted in the classification of J.~Llibre and N.~Vulpe. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 102-105. http://geodesic.mathdoc.fr/item/BASM_2014_2_a10/
[1] Artes J., Grünbaum D., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific Journal of Mathematics, 184 (1998), 317–327 | DOI | MR
[2] Bujac C., Vulpe N., Cubic systems with invariant lines of total multiplicity eight and with four distinct infinite singularities, Preprint No 10, Universitat Autónoma de Barcelona, 2013, 51 pp.
[3] Bujac C., Vulpe N., Cubic systems with invariant lines of total multiplicity eight and with three distinct infinite singularities, Preprint No 3331, CRM, Montreal, December, 2013, 30 pp.
[4] Llibre J., Vulpe N. I., “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 38 (2006), 1301–1373 | DOI | MR
[5] Schlomiuk D., Vulpe N., “Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines”, Journal of Fixed Point Theory and Applications, 8:1 (2010), 177–245 | DOI | MR | Zbl
[6] Sibirskii K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from the Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR
[7] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, “Shtiintsa”, Kishinev, 1986 (in Russian) | MR | Zbl