Invariant characteristics of special compositions in Weyl spaces~$W_N$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 9-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper invariant characteristics of geodesic, chebyshevian and quasi-chebyshevian compositions $X_{n_1}\times X_{n_2}\times\dots\times X_{n_p}$ in Weyl spaces $W_N(n_1+n_2+\dots+n_p=N)$ are found with the help of the prolonged covariant differentiation. The characteristics of the spaces $W_N$ which contain such special compositions are found.
@article{BASM_2014_2_a1,
     author = {Georgi Zlatanov and Bistra Tsareva},
     title = {Invariant characteristics of special compositions in {Weyl} spaces~$W_N$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {9--17},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/}
}
TY  - JOUR
AU  - Georgi Zlatanov
AU  - Bistra Tsareva
TI  - Invariant characteristics of special compositions in Weyl spaces~$W_N$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 9
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/
LA  - en
ID  - BASM_2014_2_a1
ER  - 
%0 Journal Article
%A Georgi Zlatanov
%A Bistra Tsareva
%T Invariant characteristics of special compositions in Weyl spaces~$W_N$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 9-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/
%G en
%F BASM_2014_2_a1
Georgi Zlatanov; Bistra Tsareva. Invariant characteristics of special compositions in Weyl spaces~$W_N$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 9-17. http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/

[1] Norden A. P., Affinely Connected Space, Monographs, Moscow, 1976 (in Russian)

[2] Norden A., Timofeev G., “Invariant Tests of the Special Compositions in Multivariate Spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 8, 81–89 (in Russian) | MR | Zbl

[3] Yano K., “Affine Connexions in an Almost Product Space”, Kodai Math. Sem. Rep., 11:1 (1959), 1–24 | DOI | MR | Zbl

[4] Walker A., “Connexions for Parallel Distributions in the Large, II”, Q. J. Math., 9:35 (1958), 221–231 | DOI | MR | Zbl

[5] Timofeev G. N., “Invariant Tests of the Special Compositions in Weyl Spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 1, 87–99 (in Russian) | MR | Zbl

[6] Leontiev E. K., “Classification of the Special Bundles and Compositions in Many-dimensional Spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 5(60), 40–51 (in Russian) | MR | Zbl

[7] Zlatanov G., Norden A. P., “Orthogonal Trajectories of Geodesic Fields”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 7(158), 42–46 (in Russian) | MR | Zbl

[8] Zlatanov G., “Nets in an $n$-demensional Space of Weyl”, C. R. Acad. Bulgare Sci., 41:10 (1988), 29–32 (in Russian) | MR | Zbl

[9] Zlatanov G., “Special Networks in the $n$-dimensional Space of Weyl $W_n$”, Tensor (N.S.), 48 (1989), 234–240 | MR | Zbl

[10] Zlatanov G., “Compositions, Generated by Special Nets in Affinely Connected Spaces”, Serdica Math. J., 28 (2002), 189–200 | MR | Zbl

[11] Ozdeger A., “Conformal and Generalized Concircular Mappings of Einstein–Weyl Manifolds”, Acta Math. Sci. Ser. B Engl. Ed., 30:5 (2010), 1739–1745 | DOI | MR | Zbl