Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_2_a1, author = {Georgi Zlatanov and Bistra Tsareva}, title = {Invariant characteristics of special compositions in {Weyl} spaces~$W_N$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {9--17}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/} }
TY - JOUR AU - Georgi Zlatanov AU - Bistra Tsareva TI - Invariant characteristics of special compositions in Weyl spaces~$W_N$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 9 EP - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/ LA - en ID - BASM_2014_2_a1 ER -
%0 Journal Article %A Georgi Zlatanov %A Bistra Tsareva %T Invariant characteristics of special compositions in Weyl spaces~$W_N$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 9-17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/ %G en %F BASM_2014_2_a1
Georgi Zlatanov; Bistra Tsareva. Invariant characteristics of special compositions in Weyl spaces~$W_N$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 9-17. http://geodesic.mathdoc.fr/item/BASM_2014_2_a1/
[1] Norden A. P., Affinely Connected Space, Monographs, Moscow, 1976 (in Russian)
[2] Norden A., Timofeev G., “Invariant Tests of the Special Compositions in Multivariate Spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 8, 81–89 (in Russian) | MR | Zbl
[3] Yano K., “Affine Connexions in an Almost Product Space”, Kodai Math. Sem. Rep., 11:1 (1959), 1–24 | DOI | MR | Zbl
[4] Walker A., “Connexions for Parallel Distributions in the Large, II”, Q. J. Math., 9:35 (1958), 221–231 | DOI | MR | Zbl
[5] Timofeev G. N., “Invariant Tests of the Special Compositions in Weyl Spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 1, 87–99 (in Russian) | MR | Zbl
[6] Leontiev E. K., “Classification of the Special Bundles and Compositions in Many-dimensional Spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 5(60), 40–51 (in Russian) | MR | Zbl
[7] Zlatanov G., Norden A. P., “Orthogonal Trajectories of Geodesic Fields”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 7(158), 42–46 (in Russian) | MR | Zbl
[8] Zlatanov G., “Nets in an $n$-demensional Space of Weyl”, C. R. Acad. Bulgare Sci., 41:10 (1988), 29–32 (in Russian) | MR | Zbl
[9] Zlatanov G., “Special Networks in the $n$-dimensional Space of Weyl $W_n$”, Tensor (N.S.), 48 (1989), 234–240 | MR | Zbl
[10] Zlatanov G., “Compositions, Generated by Special Nets in Affinely Connected Spaces”, Serdica Math. J., 28 (2002), 189–200 | MR | Zbl
[11] Ozdeger A., “Conformal and Generalized Concircular Mappings of Einstein–Weyl Manifolds”, Acta Math. Sci. Ser. B Engl. Ed., 30:5 (2010), 1739–1745 | DOI | MR | Zbl