On a~class of weighted composition operators on Fock space
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T_\phi$ be the Toeplitz operator defined on the Fock space $L_a^2(\mathbb C)$ with symbol $\phi\in L^\infty(\mathbb C)$. Let for $\lambda\in\mathbb C$, $k_\lambda(z)=e^{\frac{\bar\lambda z}2-\frac{|\lambda|^2}4}$, the normalized reproducing kernel at $\lambda$ for the Fock space $L_a^2(\mathbb C)$ and $t_\alpha(z)=z-\alpha,$ $z,\alpha\in\mathbb C$. Define the weighted composition operator $W_\alpha$ on $L_a^2(\mathbb C)$ as $(W_\alpha f)(z)=k_\alpha(z)(f\circ t_\alpha)(z)$. In this paper we have shown that if $M$ and $H$ are two bounded linear operators from $L_a^2(\mathbb C)$ into itself such that $MT_\psi H=T_{\psi\circ t_\alpha}$ for all $\psi\in L^\infty(\mathbb C)$, then $M$ and $H$ must be constant multiples of the weighted composition operator $W_\alpha$ and its adjoint respectively.
@article{BASM_2014_2_a0,
author = {Namita Das},
title = {On a~class of weighted composition operators on {Fock} space},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {3--8},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a0/}
}
Namita Das. On a~class of weighted composition operators on Fock space. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/BASM_2014_2_a0/