On a class of weighted composition operators on Fock space
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $T_\phi$ be the Toeplitz operator defined on the Fock space $L_a^2(\mathbb C)$ with symbol $\phi\in L^\infty(\mathbb C)$. Let for $\lambda\in\mathbb C$, $k_\lambda(z)=e^{\frac{\bar\lambda z}2-\frac{|\lambda|^2}4}$, the normalized reproducing kernel at $\lambda$ for the Fock space $L_a^2(\mathbb C)$ and $t_\alpha(z)=z-\alpha,$ $z,\alpha\in\mathbb C$. Define the weighted composition operator $W_\alpha$ on $L_a^2(\mathbb C)$ as $(W_\alpha f)(z)=k_\alpha(z)(f\circ t_\alpha)(z)$. In this paper we have shown that if $M$ and $H$ are two bounded linear operators from $L_a^2(\mathbb C)$ into itself such that $MT_\psi H=T_{\psi\circ t_\alpha}$ for all $\psi\in L^\infty(\mathbb C)$, then $M$ and $H$ must be constant multiples of the weighted composition operator $W_\alpha$ and its adjoint respectively.
@article{BASM_2014_2_a0,
author = {Namita Das},
title = {On a~class of weighted composition operators on {Fock} space},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {3--8},
year = {2014},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a0/}
}
Namita Das. On a class of weighted composition operators on Fock space. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/BASM_2014_2_a0/
[1] Ahlfors L. V., Complex Analysis, McGraw-Hill, 1979 | MR | Zbl
[2] Barria J., Halmos P. R., “Asymptotic Toeplitz operators”, Trans. Amer. Math. Soc., 273 (1982), 621–630 | DOI | MR | Zbl
[3] Brown A., Halmos P. R., “Algebraic properties of Toeplitz operators”, J. Reine Angew. Math., 213 (1964), 89–102 | MR
[4] Englis M., “Density of algebras generated by Toeplitz operators on Bergman spaces”, Arkiv for Matematik, 30 (1992), 227–243 | DOI | MR | Zbl
[5] Rudin W., Real and complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987 | MR | Zbl