On the number of group topologies on countable groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 101-112
Voir la notice de l'article provenant de la source Math-Net.Ru
If a countable group $G$ admits a non-discrete Hausdorff group topology, then the lattice of all group topologies of the group $G$ admits:
– continuum $c$ of non-discrete metrizable group topologies such that $\sup\{\tau_1,\tau_2\}$ is the discrete topology for any two of these topologies;
– two to the power of continuum of coatoms in the lattice of all group topologies.
@article{BASM_2014_1_a6,
author = {V. I. Arnautov and G. N. Ermakova},
title = {On the number of group topologies on countable groups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {101--112},
publisher = {mathdoc},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_1_a6/}
}
TY - JOUR AU - V. I. Arnautov AU - G. N. Ermakova TI - On the number of group topologies on countable groups JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 101 EP - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_1_a6/ LA - en ID - BASM_2014_1_a6 ER -
V. I. Arnautov; G. N. Ermakova. On the number of group topologies on countable groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 101-112. http://geodesic.mathdoc.fr/item/BASM_2014_1_a6/