On the number of group topologies on countable groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 101-112
Cet article a éte moissonné depuis la source Math-Net.Ru
If a countable group $G$ admits a non-discrete Hausdorff group topology, then the lattice of all group topologies of the group $G$ admits: – continuum $c$ of non-discrete metrizable group topologies such that $\sup\{\tau_1,\tau_2\}$ is the discrete topology for any two of these topologies; – two to the power of continuum of coatoms in the lattice of all group topologies.
@article{BASM_2014_1_a6,
author = {V. I. Arnautov and G. N. Ermakova},
title = {On the number of group topologies on countable groups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {101--112},
year = {2014},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_1_a6/}
}
V. I. Arnautov; G. N. Ermakova. On the number of group topologies on countable groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 101-112. http://geodesic.mathdoc.fr/item/BASM_2014_1_a6/
[1] Arnautov V. I., Ermakova G. N., “On the number of metrizable group topologies on countable groups”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2013, no. 2(72)–3(73), 17–26
[2] Bourbaki N., Topologie generale, Moskva, 1958 (in Russian)
[3] Engelking R., General topology, Moskva, 1986 (in Russian) | MR