A note on six-dimensional planar Hermitian submanifolds of Cayley algebra
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Six-dimensional planar Hermitian submanifolds of Cayley algebra are considered. It is proved that if such a submanifold of the octave algebta satisfies the $U$-Kenmotsu hypersurfaces axiom, then it is Kählerian. It is also proved that a symmetric non-Kählerian Hermitian six-dimensional submanifold of the Ricci type does not admit totally umbilical Kenmotsu hypersurfaces.
@article{BASM_2014_1_a2,
     author = {Mihail B. Banaru and Galina A. Banaru},
     title = {A note on six-dimensional planar {Hermitian} submanifolds of {Cayley} algebra},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--32},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_1_a2/}
}
TY  - JOUR
AU  - Mihail B. Banaru
AU  - Galina A. Banaru
TI  - A note on six-dimensional planar Hermitian submanifolds of Cayley algebra
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 23
EP  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_1_a2/
LA  - en
ID  - BASM_2014_1_a2
ER  - 
%0 Journal Article
%A Mihail B. Banaru
%A Galina A. Banaru
%T A note on six-dimensional planar Hermitian submanifolds of Cayley algebra
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 23-32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_1_a2/
%G en
%F BASM_2014_1_a2
Mihail B. Banaru; Galina A. Banaru. A note on six-dimensional planar Hermitian submanifolds of Cayley algebra. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 23-32. http://geodesic.mathdoc.fr/item/BASM_2014_1_a2/

[1] Abu-Saleem A., Banaru M., “Some applications of Kirichenko tensors”, Analele Univ. Oradea, 17:2 (2010), 201–208 | MR | Zbl

[2] Banaru M., “On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifold of Cayley algebra”, Contemporary Geometry and Related Topics, Proceedings of the Workshop (Belgrade, Yugoslavia, 15–21 May, 2002), World Scientific, Singapore, 2004, 33–40 | DOI | MR | Zbl

[3] Banaru M., “On the Gray–Hervella classes of AH-structures on six-dimensional submanifolds of Cayley algebra”, Annuaire de l'universite de Sofia “St. Kl. Ohridski”, 95 (2004), 125–131 | MR | Zbl

[4] Banaru M., “On the type number of six-dimensional planar Hermitian submanifolds of Cayley algebra”, Kyungpook Math. Journal, 43:1 (2003), 27–35 | MR | Zbl

[5] Banaru M., “On Kirichenko tensors of nearly-Kählerian manifolds”, Journal of Sichuan University of Science Engineering, 25:4 (2012), 1–5

[6] Banaru M., Banaru G., “About six-dimensional planar Hermitian submanifolds of Cayley algebra”, Bul. Stiintific Univ. “Politehnica” Timisoara, 46(60):1 (2001), 3–17 | MR

[7] Banaru M., Banaru G., “On spectra of some tensors of planar six-dimensional Hermitian submanifolds of Cayley algebra”, Proceedings of VII International Seminar “Discrete Mathematics and Its Application”, Moscow State University, 2001, 250–253 (in Russian)

[8] Blair D. E., “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509, 1976, 1–145 | DOI | MR

[9] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Math., Birkhauser, Boston–Basel–Berlin, 2002 | MR

[10] Gray A., “Some examples of almost Hermitian manifolds”, Illinois Journal Math., 10:2 (1966), 353–366 | MR | Zbl

[11] Gray A., “Six-dimensional almost complex manifolds defined by means of three-fold vector cross products”, Tôhoku Math. J., 21:4 (1969), 614–620 | DOI | MR | Zbl

[12] Gray A., “Vector cross products on manifolds”, Trans. Amer. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl

[13] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl

[14] Kenmotsu K., “A class of almost contact Riemannian manifolds”, Tôhoku Math. J., 24 (1972), 93–103 | DOI | MR | Zbl

[15] Kirichenko V. F., “On nearly-Kählerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra”, Vestnik MGU, 1973, no. 3, 70–75

[16] Kirichenko V. F., “Classification of Kahlerian structures, defined by means of three-fold vector cross products on six-dimensional submanifolds of Cayley algebra”, Izvestia Vuzov. Math., 1980, no. 8, 32–38 | MR | Zbl

[17] Kirichenko V. F., “Hermitian geometry of six-dimensional symmetric submanifolds of Cayley algebra”, Vestnik MGU, 1994, no. 3, 6–13 | MR | Zbl

[18] Kirichenko V. F., “On geometry of Kenmotsu manifolds”, DAN Math., 380:5 (2001), 585–587 | MR | Zbl

[19] Kirichenko V. F., Differential-geometrical structures on manifolds, MSPU, Moscow, 2003 (in Russian)

[20] Kirichenko V. F., “Sur la géométrie des variétés approximativement cosymplectiques”, C. R. Acad. Sci. Paris, Ser. 1, 295:12 (1982), 673–676 | MR | Zbl

[21] Pitis G., Geometry of Kenmotsu manifolds, Publ. House Transilvania Univ., Brasov, 2007 | MR | Zbl

[22] Stepanova L. V., Contact geometry of hypersurfaces in quasi-Kählerian manifolds, PhD thesis, MSPU, Moscow, 1995 (in Russian)