On a~four-dimensional hyperbolic manifold with finite volume
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 80-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article [1] the authors construct and classify all the hyperbolic space-forms $H^n/\Gamma$ where $\Gamma$ is a torsion-free subgroup of minimal index in the congruence two subgroup $\Gamma_2^n$ for $n=3,4$. In the present paper some hyperbolic $3$- and $4$-manifolds are constructed that are absent in [1].
@article{BASM_2013_2_a8,
     author = {I. S. Gutsul},
     title = {On a~four-dimensional hyperbolic manifold with finite volume},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {80--89},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a8/}
}
TY  - JOUR
AU  - I. S. Gutsul
TI  - On a~four-dimensional hyperbolic manifold with finite volume
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 80
EP  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a8/
LA  - en
ID  - BASM_2013_2_a8
ER  - 
%0 Journal Article
%A I. S. Gutsul
%T On a~four-dimensional hyperbolic manifold with finite volume
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 80-89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a8/
%G en
%F BASM_2013_2_a8
I. S. Gutsul. On a~four-dimensional hyperbolic manifold with finite volume. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 80-89. http://geodesic.mathdoc.fr/item/BASM_2013_2_a8/

[1] Ratcliffe I. G., Tschantz S. T., “The Volume Spectrum of Hyperbolic 4-Manifolds”, Experimental Math., 9 (2000), 101–125 | DOI | MR | Zbl

[2] Gutsul I. S., “Some hyperbolic manifolds”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2004, no. 3(46), 63–70 | MR | Zbl