Infinitely many maximal primitive positive clones in a~diagonalizable algebra
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 47-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a rather simple example of infinitely many maximal primitive positive clones in a diagonalizable algebra, which serve as an algebraic model for the provability propositional logic $GL$.
@article{BASM_2013_2_a5,
     author = {Andrei Rusu},
     title = {Infinitely many maximal primitive positive clones in a~diagonalizable algebra},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {47--52},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a5/}
}
TY  - JOUR
AU  - Andrei Rusu
TI  - Infinitely many maximal primitive positive clones in a~diagonalizable algebra
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 47
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a5/
LA  - en
ID  - BASM_2013_2_a5
ER  - 
%0 Journal Article
%A Andrei Rusu
%T Infinitely many maximal primitive positive clones in a~diagonalizable algebra
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 47-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a5/
%G en
%F BASM_2013_2_a5
Andrei Rusu. Infinitely many maximal primitive positive clones in a~diagonalizable algebra. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 47-52. http://geodesic.mathdoc.fr/item/BASM_2013_2_a5/