On the number of metrizable group topologies on countable groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 17-26
Cet article a éte moissonné depuis la source Math-Net.Ru
If a countable group $G$ admits a non-discrete metrizable group topology $\tau_0$, then in the group $G$, there are: – Continuum of non-discrete metrizable group topologies stronger than $\tau_0$, and any two of these topologies are incomparable; – Continuum of non-discrete metrizable group topologies stronger than $\tau_0$, and any two of these topologies are comparable.
@article{BASM_2013_2_a2,
author = {V. I. Arnautov and G. N. Ermakova},
title = {On the number of metrizable group topologies on countable groups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {17--26},
year = {2013},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/}
}
TY - JOUR AU - V. I. Arnautov AU - G. N. Ermakova TI - On the number of metrizable group topologies on countable groups JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2013 SP - 17 EP - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/ LA - en ID - BASM_2013_2_a2 ER -
V. I. Arnautov; G. N. Ermakova. On the number of metrizable group topologies on countable groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 17-26. http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/
[1] Markov A. A., “On absolutely closed sets”, Mat. Sb., 18(60):1 (1945), 3–28 (in Russian) | MR | Zbl
[2] Kertesz A., Szele T.,, “On existence of non-discrete topologies on an infinite Abelian groups”, Publ. Math., 3 (1953), 187–189 | MR
[3] Ol'shansky A. Yu., “Remark on countable non-topologizable group”, Vestnik MGU. Ser. Mat. i Mech., 1980, no. 3, 103 (in Russian)
[4] Bourbaki N., Topologie generale, Moskva, 1958 (in Russian)
[5] Engelking R., General topology, Moskva, 1986 (in Russian) | MR