On the number of metrizable group topologies on countable groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

If a countable group $G$ admits a non-discrete metrizable group topology $\tau_0$, then in the group $G$, there are: – Continuum of non-discrete metrizable group topologies stronger than $\tau_0$, and any two of these topologies are incomparable; – Continuum of non-discrete metrizable group topologies stronger than $\tau_0$, and any two of these topologies are comparable.
@article{BASM_2013_2_a2,
     author = {V. I. Arnautov and G. N. Ermakova},
     title = {On the number of metrizable group topologies on countable groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--26},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/}
}
TY  - JOUR
AU  - V. I. Arnautov
AU  - G. N. Ermakova
TI  - On the number of metrizable group topologies on countable groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 17
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/
LA  - en
ID  - BASM_2013_2_a2
ER  - 
%0 Journal Article
%A V. I. Arnautov
%A G. N. Ermakova
%T On the number of metrizable group topologies on countable groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 17-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/
%G en
%F BASM_2013_2_a2
V. I. Arnautov; G. N. Ermakova. On the number of metrizable group topologies on countable groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 17-26. http://geodesic.mathdoc.fr/item/BASM_2013_2_a2/

[1] Markov A. A., “On absolutely closed sets”, Mat. Sb., 18(60):1 (1945), 3–28 (in Russian) | MR | Zbl

[2] Kertesz A., Szele T.,, “On existence of non-discrete topologies on an infinite Abelian groups”, Publ. Math., 3 (1953), 187–189 | MR

[3] Ol'shansky A. Yu., “Remark on countable non-topologizable group”, Vestnik MGU. Ser. Mat. i Mech., 1980, no. 3, 103 (in Russian)

[4] Bourbaki N., Topologie generale, Moskva, 1958 (in Russian)

[5] Engelking R., General topology, Moskva, 1986 (in Russian) | MR