Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we define a new operator, by means of convolution product between Ruscheweyh derivative and the multiplier transformation $I(m,\lambda,l)$. For functions $f$ belonging to the class $\mathcal A$ we define the differential operator $IR_{\lambda,l}^m\colon\mathcal A\to\mathcal A$, $IR_{\lambda,l}^m(z):=(I(m,\lambda,l)\ast R^m)f(z)$, where $\mathcal A_n=\{f\in\mathcal H(U)\colon f(z)=z+a_{n+1}z^{n+1}+\dots,\ z\in U\}$ is the class of normalized analytic functions, with $\mathcal A_1=\mathcal A$. We study some differential superordinations regarding the operator $IR_{\lambda,l}^m$.
@article{BASM_2013_2_a13,
     author = {Alina Alb Lupa\c{s}},
     title = {Certain differential superordinations using a~multiplier transformation and {Ruscheweyh} derivative},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {119--131},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a13/}
}
TY  - JOUR
AU  - Alina Alb Lupaş
TI  - Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 119
EP  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a13/
LA  - en
ID  - BASM_2013_2_a13
ER  - 
%0 Journal Article
%A Alina Alb Lupaş
%T Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 119-131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a13/
%G en
%F BASM_2013_2_a13
Alina Alb Lupaş. Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 119-131. http://geodesic.mathdoc.fr/item/BASM_2013_2_a13/