Minimal $m$-handle decomposition of three-dimensional handlebodies
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 106-110
Cet article a éte moissonné depuis la source Math-Net.Ru
For the $3$-dimensional handlebody we build an $m$-handle decomposition with minimal number of handles and prove a criterion of minimality. It is proved that two functions can be connected by a path in the $m$-function space without inner critical points on the solid torus if they have the same number of critical points of each index.
@article{BASM_2013_2_a11,
author = {Alexander Prishlyak and Elena Vyatchaninova},
title = {Minimal $m$-handle decomposition of three-dimensional handlebodies},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {106--110},
year = {2013},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a11/}
}
TY - JOUR AU - Alexander Prishlyak AU - Elena Vyatchaninova TI - Minimal $m$-handle decomposition of three-dimensional handlebodies JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2013 SP - 106 EP - 110 IS - 2 UR - http://geodesic.mathdoc.fr/item/BASM_2013_2_a11/ LA - en ID - BASM_2013_2_a11 ER -
%0 Journal Article %A Alexander Prishlyak %A Elena Vyatchaninova %T Minimal $m$-handle decomposition of three-dimensional handlebodies %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2013 %P 106-110 %N 2 %U http://geodesic.mathdoc.fr/item/BASM_2013_2_a11/ %G en %F BASM_2013_2_a11
Alexander Prishlyak; Elena Vyatchaninova. Minimal $m$-handle decomposition of three-dimensional handlebodies. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 106-110. http://geodesic.mathdoc.fr/item/BASM_2013_2_a11/
[1] Sharko V., “Functions on the surfaces, I”, Some contemporary problems in mathematics, Proc. In-t of Math. NASU, 25, Kiev, 1998, 408–434 | MR
[2] Maksymenko S. I., “Path-components of Morse mappings spaces of surface”, Comment. Math. Helv., 80 (2005), 655–690 | DOI | MR | Zbl
[3] Hajduk B., “Minimal $m$-functions”, Fund. math., 110 (1981), 178–200 | MR
[4] Jankowski A., Rubinsztein R., “Functions with non-degenerated critical points on manifolds with boundary”, Comm. Math., 16 (1972), 99–112 | MR | Zbl
[5] Prishlyak O. O., Prishlyak K. O., Vyatchaninova O. N., “Homotopic classification of noncritical $m$-functions on 3-disk”, J. Num. Appl. Math., 110 (2012), 113–119