Liouville's theorem for vector-valued functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown in [2] that any $X$-valued analytic map on $\mathbb C\cup\{\infty\}$ is a constant map in case when $X$ is a strongly galbed Hausdorff space. In [3] this result is generalized to the case when $X$ is a topological linear Hausdorff space, the von Neumann bornology of which is strongly galbed. A new detailed proof for the last result is given in the present paper. Moreover, it is shown that for several topological linear spaces the von Neumann bornology is strongly galbed or pseudogalbed.
@article{BASM_2013_2_a1,
     author = {Mati Abel},
     title = {Liouville's theorem for vector-valued functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {5--16},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a1/}
}
TY  - JOUR
AU  - Mati Abel
TI  - Liouville's theorem for vector-valued functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 5
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a1/
LA  - en
ID  - BASM_2013_2_a1
ER  - 
%0 Journal Article
%A Mati Abel
%T Liouville's theorem for vector-valued functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 5-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a1/
%G en
%F BASM_2013_2_a1
Mati Abel. Liouville's theorem for vector-valued functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 5-16. http://geodesic.mathdoc.fr/item/BASM_2013_2_a1/