Semilattice decompositions of trioids
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 130-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all semilattice congruences on an arbitrary trioid and define the least semilattice congruence on this trioid. We also show that every trioid is a semilattice of $s$-simple subtrioids.
@article{BASM_2013_1_a5,
     author = {Anatolii V. Zhuchok},
     title = {Semilattice decompositions of trioids},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {130--134},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_1_a5/}
}
TY  - JOUR
AU  - Anatolii V. Zhuchok
TI  - Semilattice decompositions of trioids
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 130
EP  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_1_a5/
LA  - en
ID  - BASM_2013_1_a5
ER  - 
%0 Journal Article
%A Anatolii V. Zhuchok
%T Semilattice decompositions of trioids
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 130-134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_1_a5/
%G en
%F BASM_2013_1_a5
Anatolii V. Zhuchok. Semilattice decompositions of trioids. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 130-134. http://geodesic.mathdoc.fr/item/BASM_2013_1_a5/