The order of convexity for a~general integral operator
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 125-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the classes of the univalent functions denoted by $\mathcal{SH}(\beta)$, $\mathcal{SP}$ and $\mathcal{SP}(\alpha,\beta)$. On these classes we study the order of convexity of the integral operator $\int_0^z(te^{f(t)})^\gamma\,dt$, where the function $f$ belongs to these classes.
@article{BASM_2013_1_a4,
     author = {Laura Stanciu and Daniel Breaz},
     title = {The order of convexity for a~general integral operator},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {125--129},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_1_a4/}
}
TY  - JOUR
AU  - Laura Stanciu
AU  - Daniel Breaz
TI  - The order of convexity for a~general integral operator
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 125
EP  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_1_a4/
LA  - en
ID  - BASM_2013_1_a4
ER  - 
%0 Journal Article
%A Laura Stanciu
%A Daniel Breaz
%T The order of convexity for a~general integral operator
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 125-129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_1_a4/
%G en
%F BASM_2013_1_a4
Laura Stanciu; Daniel Breaz. The order of convexity for a~general integral operator. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 125-129. http://geodesic.mathdoc.fr/item/BASM_2013_1_a4/

[1] Frasin B. A., Ahmad A. S., “The order of convexity of two integral operators”, Babeş Bolyai Mathematica, 55:2 (2010), 113–117 | MR

[2] Ronning F., “Integral reprezentations of bounded starlike functions”, Ann. Polon. Math., 60:3, 289–297 | MR | Zbl

[3] Ronning F., “Uniformly convex functions and a corresponding class of starlike functions”, Proc. Amer. Math. Soc., 118:1 (1993), 190–196 | DOI | MR

[4] Stankiewicz J., Wisniowska A., “Starlike functions associated with some hyperbola”, Folia Scientiarum Universitatis Tehnicae Resoviensis, Matematyka, 147(19), 1996, 117–126 | MR | Zbl