The order of convexity for a general integral operator
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 125-129
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider the classes of the univalent functions denoted by $\mathcal{SH}(\beta)$, $\mathcal{SP}$ and $\mathcal{SP}(\alpha,\beta)$. On these classes we study the order of convexity of the integral operator $\int_0^z(te^{f(t)})^\gamma\,dt$, where the function $f$ belongs to these classes.
@article{BASM_2013_1_a4,
author = {Laura Stanciu and Daniel Breaz},
title = {The order of convexity for a~general integral operator},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {125--129},
year = {2013},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2013_1_a4/}
}
Laura Stanciu; Daniel Breaz. The order of convexity for a general integral operator. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 125-129. http://geodesic.mathdoc.fr/item/BASM_2013_1_a4/
[1] Frasin B. A., Ahmad A. S., “The order of convexity of two integral operators”, Babeş Bolyai Mathematica, 55:2 (2010), 113–117 | MR
[2] Ronning F., “Integral reprezentations of bounded starlike functions”, Ann. Polon. Math., 60:3, 289–297 | MR | Zbl
[3] Ronning F., “Uniformly convex functions and a corresponding class of starlike functions”, Proc. Amer. Math. Soc., 118:1 (1993), 190–196 | DOI | MR
[4] Stankiewicz J., Wisniowska A., “Starlike functions associated with some hyperbola”, Folia Scientiarum Universitatis Tehnicae Resoviensis, Matematyka, 147(19), 1996, 117–126 | MR | Zbl