Properties of covers in the lattice of group topologies for nilpotent groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 38-44
Cet article a éte moissonné depuis la source Math-Net.Ru
A nilpotent group $\widehat G$ and two group topologies $\widehat\tau''$ and $\widehat\tau*$ on $\widehat G$ are constructed such that $\widehat\tau*$ is a coatom in the lattice of all group topologies of the group $\widehat G$ and such that between $\inf\{\widehat\tau'',\widehat\tau_d\}$ and $\inf\{\widehat\tau'',\widehat\tau*\}$ there exists an infinite chain of group topologies.
@article{BASM_2012_3_a3,
author = {V. I. Arnautov},
title = {Properties of covers in the lattice of group topologies for nilpotent groups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {38--44},
year = {2012},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2012_3_a3/}
}
V. I. Arnautov. Properties of covers in the lattice of group topologies for nilpotent groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 38-44. http://geodesic.mathdoc.fr/item/BASM_2012_3_a3/
[1] Arnautov V. I., Topala A. Gh., “An example of ring with non-modular lattice of ring topologies”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 1998, no. 2(27), 130–131 | MR | Zbl
[2] Arnautov V. I., “Properties of finite unrefinable chais of groups topologies”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2009, no. 2(60), 1–17 | MR
[3] Bourbaki N., Obshchaya topologiya. Osnovnye structury (General Topology, Fundamental Structures), Moscow, 1958, 324 pp. (in Russian)