On Frattini subloops and normalizers of commutative Moufang loops
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 16-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a commutative Moufang loop (CML) with the multiplication group $\mathfrak M$, and let $\mathfrak F(L)$, $\mathfrak F(\mathfrak M)$ be the Frattini subloop of $L$ and Frattini subgroup of $\mathfrak M$. It is proved that $\mathfrak F(L)=L$ if and only if $\mathfrak F(\mathfrak M)=\mathfrak M$, and the structure of this CML is described. The notion of normalizer for subloops in CML is defined constructively. Using this it is proved that if $\mathfrak F(L)\neq L$, then $L$ satisfies the normalizer condition and that any divisible subgroup of $\mathfrak M$ is an abelian group and serves as a direct factor for $\mathfrak M$.
@article{BASM_2012_3_a1,
     author = {N. I. Sandu},
     title = {On {Frattini} subloops and normalizers of commutative {Moufang} loops},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {16--27},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_3_a1/}
}
TY  - JOUR
AU  - N. I. Sandu
TI  - On Frattini subloops and normalizers of commutative Moufang loops
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 16
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_3_a1/
LA  - en
ID  - BASM_2012_3_a1
ER  - 
%0 Journal Article
%A N. I. Sandu
%T On Frattini subloops and normalizers of commutative Moufang loops
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 16-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_3_a1/
%G en
%F BASM_2012_3_a1
N. I. Sandu. On Frattini subloops and normalizers of commutative Moufang loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 16-27. http://geodesic.mathdoc.fr/item/BASM_2012_3_a1/