Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 81-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all cubic differential systems with exactly seven invariant straight lines (taking into account their parallel multiplicity) which form a configuration of type $(3,3,1)$. We prove that there are six different topological classes of such systems. For every class we carried out the qualitative investigation on the Poincaré disc. Some properties of cubic systems with invariant straight lines are given.
@article{BASM_2012_2_a6,
     author = {Alexandru \c{S}ub\u{a} and Vadim Repe\c{s}co and Vitalie Pu\c{t}untic\u{a}},
     title = {Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {81--98},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/}
}
TY  - JOUR
AU  - Alexandru Şubă
AU  - Vadim Repeşco
AU  - Vitalie Puţuntică
TI  - Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 81
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/
LA  - en
ID  - BASM_2012_2_a6
ER  - 
%0 Journal Article
%A Alexandru Şubă
%A Vadim Repeşco
%A Vitalie Puţuntică
%T Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 81-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/
%G en
%F BASM_2012_2_a6
Alexandru Şubă; Vadim Repeşco; Vitalie Puţuntică. Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 81-98. http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/

[1] Artes J., Grünbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific Journal of Mathematics, 184:2 (1998), 207–230 | DOI | MR | Zbl

[2] Artes J., Llibre J., “On the number of slopes of invariant straight lines for polynomial differential systems”, J. of Nanjing University, 13 (1996), 143–149 | MR | Zbl

[3] Bautin N. N., Leontovich E. A., Methods and rules for the qualitative study of dynamical systems on the plane, Second edition, Nauka, Moscow, 1990 (in Russia) | MR | Zbl

[4] Chavarriga J., Giné J., “Integrability of cubic systems with degenerate infinity”, Differential Equations Dynam. Systems, 6:4 (1998), 425–438 | MR | Zbl

[5] Chavarriga J., Giné J., García I., “Isochronous centers of cubic systems with degenerate infinity”, Differential Equations Dynam. Systems, 7:2 (1999), 221–238 | MR | Zbl

[6] Christopher C. J., “Invariant algebraic curves and conditions for a center”, Proc. Roy. Soc. Edinburgh Sect. A, 124:6 (1994), 1209–1229 | DOI | MR | Zbl

[7] Christopher C., Llibre J., Pereira J. V., “Multiplicity of invariant algebraic curves in polynomial vector fields”, Pacific Journal of Mathematics, 329:1 (2007), 63–117 | DOI | MR

[8] Cozma D., Şubă A., “The solution of the problem of center for cubic differential systems with four invariant straight lines”, Mathematical analysis and applications (Iaşi, 1997), An. Ştiinţ. Univ. “Al. I. Cuza”, 44, Iaşi, 1997, 517–530 | MR

[9] Dumortier F., “Singularities of vector fields on the plane”, J. Differential Equations, 23 (1977), 53–106 | DOI | MR | Zbl

[10] Suo Guangjian, Sun Jifang, “The $n$-degree differential system with $(n-1)(n+1)/2$ straight line solutions has no limit cycles”, Proc. of Ordinary Differential Equations and Control Theory, Wuhan, 1987, 216–220 (in Chinese) | MR

[11] Kooij R., “Cubic systems with four line invariants, including complex conjugated lines”, Math. Proc. Camb. Phil. Soc., 118:1 (1995), 7–19 | DOI | MR | Zbl

[12] Llibre J., Vulpe N., “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl

[13] Lloyd N. G., Christopher C. J., Devlin J., Pearson J. M., “Quadratic-like cubic systems”, Differential Equations Dynam. Systems, 5:3/4 (1997), 329–345 | MR | Zbl

[14] Lyubimova R. A., “About one differential equation with invariant straight lines”, Differential and integral equations (Gorky Universitet), 1984, no. 8, 66–69; Differential and integral equations (Gorky Universitet), 1997, no. 1, 19–22 (in Russian)

[15] Puţuntică V., Şubă A., “The cubic differential system with six real invariant straight lines along two directions”, Studia Universitatis. Seria Ştiinţe Exacte şi Economice, 2008, no. 8(13), 5–16 | MR

[16] Puţuntică V., Şubă A., “The cubic differential system with six real invariant straight lines along three directions”, Bulletin of ASRM. Mathematics, 2009, no. 2(60), 111–130 | MR

[17] Rychkov G. S., “The limit cycles of the equation $u(x+1)du=(-x+ax^2+bxu+cu+du^2)dx$”, Differentsial'nye Uravneniya, 8:12 (1972), 2257–2259 (in Russian) | MR | Zbl

[18] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl

[19] Sokulski J., “On the number of invariant lines for polynomial vector fields”, Nonlinearity, 9 (1996), 479–485 | DOI | MR | Zbl

[20] Şubă A., Cozma D., “Solution of the problem of the center for cubic differential system with three invariant straight lines in generic position”, Qualitative Theory of Dynamical Systems, 6, Universitat de Lleida, Spaine, 2005, 45–58 | DOI | MR