Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 81-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all cubic differential systems with exactly seven invariant straight lines (taking into account their parallel multiplicity) which form a configuration of type $(3,3,1)$. We prove that there are six different topological classes of such systems. For every class we carried out the qualitative investigation on the Poincaré disc. Some properties of cubic systems with invariant straight lines are given.
@article{BASM_2012_2_a6,
     author = {Alexandru \c{S}ub\u{a} and Vadim Repe\c{s}co and Vitalie Pu\c{t}untic\u{a}},
     title = {Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {81--98},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/}
}
TY  - JOUR
AU  - Alexandru Şubă
AU  - Vadim Repeşco
AU  - Vitalie Puţuntică
TI  - Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 81
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/
LA  - en
ID  - BASM_2012_2_a6
ER  - 
%0 Journal Article
%A Alexandru Şubă
%A Vadim Repeşco
%A Vitalie Puţuntică
%T Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 81-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/
%G en
%F BASM_2012_2_a6
Alexandru Şubă; Vadim Repeşco; Vitalie Puţuntică. Cubic systems with seven invariant straight lines of configuration~$(3,3,1)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 81-98. http://geodesic.mathdoc.fr/item/BASM_2012_2_a6/