Method of construction of topologies on any finite set
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 29-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a topology $\tau$ be defined on a finite set. We give the definition of quasiatoms in the lattice $(\tau,\subseteq)$ and study their properties. For any splitting of a finite set $X$ into $k$ subsets we give a method of constructing any topology on the set $X$ for which this splitting is the set of all quasiatoms and the weight of this topological space is equal to $k$.
@article{BASM_2012_2_a2,
     author = {V. I. Arnautov},
     title = {Method of construction of topologies on any finite set},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--42},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_2_a2/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - Method of construction of topologies on any finite set
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 29
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_2_a2/
LA  - en
ID  - BASM_2012_2_a2
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T Method of construction of topologies on any finite set
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 29-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_2_a2/
%G en
%F BASM_2012_2_a2
V. I. Arnautov. Method of construction of topologies on any finite set. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 29-42. http://geodesic.mathdoc.fr/item/BASM_2012_2_a2/