Method of construction of topologies on any finite set
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 29-42
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a topology $\tau$ be defined on a finite set. We give the definition of quasiatoms in the lattice $(\tau,\subseteq)$ and study their properties. For any splitting of a finite set $X$ into $k$ subsets we give a method of constructing any topology on the set $X$ for which this splitting is the set of all quasiatoms and the weight of this topological space is equal to $k$.
@article{BASM_2012_2_a2,
author = {V. I. Arnautov},
title = {Method of construction of topologies on any finite set},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {29--42},
year = {2012},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2012_2_a2/}
}
V. I. Arnautov. Method of construction of topologies on any finite set. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 29-42. http://geodesic.mathdoc.fr/item/BASM_2012_2_a2/
[1] Arnautov V. I., Kochina A. V., “The method of construction of one-point expansions of a topology on a finite set and its application”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2010, no. 3(64), 67–76 | MR | Zbl
[2] Arnautov V. I., “Estimation of the number of one-point expansions of a topology which is given on a finite set”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2011, no. 2(65), 17–22 | MR | Zbl
[3] Skornyakov L. A., Elements of the theory of structures, Nauka, Moscow, 1982 (in Russian) | MR | Zbl
[4] Birkgoff G., Theory of lattices, Nauka, Moscow, 1984 (in Russian)