Conjugate sets of loops and quasigroups. DC-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 21-31

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the set of conjugates (the conjugate set) of a binary quasigroup can contain 1,2,3 or 6 elements. We investigate loops, $IP$-quasigroups and $T$-quasigroups with distinct conjugate sets described earlier. We study in more detail the quasigroups all conjugates of which are pairwise distinct (shortly, $DC$-quasigroups). The criterion of a $DC$-quasigroup (a $DC$-$IP$-quasigroup, a $DC$-$T$-quasigroup) is given, the existence of $DC$-$T$-quasigroups for any order $n\geq5$, $n\neq6$, is proved and some examples of $DC$-quasigroups are given.
@article{BASM_2012_1_a2,
     author = {G. B. Belyavskaya and T. V. Popovich},
     title = {Conjugate sets of loops and quasigroups. {DC-quasigroups}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {21--31},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_1_a2/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
AU  - T. V. Popovich
TI  - Conjugate sets of loops and quasigroups. DC-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 21
EP  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_1_a2/
LA  - en
ID  - BASM_2012_1_a2
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%A T. V. Popovich
%T Conjugate sets of loops and quasigroups. DC-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 21-31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_1_a2/
%G en
%F BASM_2012_1_a2
G. B. Belyavskaya; T. V. Popovich. Conjugate sets of loops and quasigroups. DC-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 21-31. http://geodesic.mathdoc.fr/item/BASM_2012_1_a2/