Topologies on $Spec_g(M)$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 45-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a $G$-graded commutative ring with identity and let $M$ be a graded $R$-module. We endow $Spec_g(M)$, the collection of all graded prime submodules of $M$, analogous to that for $Spec(R)$, the spectrum of prime ideals of $R$, by two topologies: quasi-Zariski topology and Zariski topology. Then we study some properties of these topological spaces.
@article{BASM_2011_3_a3,
     author = {Ahmad Yousefian Darani},
     title = {Topologies on $Spec_g(M)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {45--53},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a3/}
}
TY  - JOUR
AU  - Ahmad Yousefian Darani
TI  - Topologies on $Spec_g(M)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 45
EP  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a3/
LA  - en
ID  - BASM_2011_3_a3
ER  - 
%0 Journal Article
%A Ahmad Yousefian Darani
%T Topologies on $Spec_g(M)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 45-53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a3/
%G en
%F BASM_2011_3_a3
Ahmad Yousefian Darani. Topologies on $Spec_g(M)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 45-53. http://geodesic.mathdoc.fr/item/BASM_2011_3_a3/