A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a generalization of Hardy–Hilbert's inequality for non-homogeneous kernel by considering sequences $(s_n)$, $(t_n)$, the functions $\phi_p$, $\phi_q$ and parameter $\lambda$. This inequality generalizes both Hardy–Hilbert's inequality and Mulholland's inequality, which includes most of the recent results of this type. As applications, the equivalent form, some particular results and a generalized Hardy–Littlewood inequality are established.
@article{BASM_2011_3_a2,
     author = {Namita Das and Srinibas Sahoo},
     title = {A generalization of {Hardy--Hilbert's} inequality for non-homogeneous kernel},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--44},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/}
}
TY  - JOUR
AU  - Namita Das
AU  - Srinibas Sahoo
TI  - A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 29
EP  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/
LA  - en
ID  - BASM_2011_3_a2
ER  - 
%0 Journal Article
%A Namita Das
%A Srinibas Sahoo
%T A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 29-44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/
%G en
%F BASM_2011_3_a2
Namita Das; Srinibas Sahoo. A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44. http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/