A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a generalization of Hardy–Hilbert's inequality for non-homogeneous kernel by considering sequences $(s_n)$, $(t_n)$, the functions $\phi_p$, $\phi_q$ and parameter $\lambda$. This inequality generalizes both Hardy–Hilbert's inequality and Mulholland's inequality, which includes most of the recent results of this type. As applications, the equivalent form, some particular results and a generalized Hardy–Littlewood inequality are established.
@article{BASM_2011_3_a2,
     author = {Namita Das and Srinibas Sahoo},
     title = {A generalization of {Hardy--Hilbert's} inequality for non-homogeneous kernel},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--44},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/}
}
TY  - JOUR
AU  - Namita Das
AU  - Srinibas Sahoo
TI  - A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 29
EP  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/
LA  - en
ID  - BASM_2011_3_a2
ER  - 
%0 Journal Article
%A Namita Das
%A Srinibas Sahoo
%T A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 29-44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/
%G en
%F BASM_2011_3_a2
Namita Das; Srinibas Sahoo. A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44. http://geodesic.mathdoc.fr/item/BASM_2011_3_a2/

[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambrige, 1952 | MR | Zbl

[2] Hardy G. H., “Note on a theorem of Hilbert concerning series of positive terms”, Proc. London Math. Soc., 23:2 (1925), 45–46

[3] Mulholland H. P., “A Further Generalization of Hilbert Double Series Theorem”, J. London Math. Soc., 6 (1931), 100–106 | DOI | MR | Zbl

[4] Mintrinovic D. S., Pecaric J. E., Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991 | MR

[5] Brnetic I., Pecaric J. E., “Generalization of inequalities of Hardy–Hilbert type”, Math. Ineq. and Appl., 7:2 (2004), 217–225 | DOI | MR | Zbl

[6] Yang B., Debnath L., “On the extended Hardy–Hilbert's inequality”, J. Math. Anal. Appl., 272 (2002), 187–199 | DOI | MR | Zbl

[7] Yang B., “On an extension of Hardy–Hilbert's inequality”, Chinese Annals of Math. (A), 23:2 (2002), 247–254 | MR | Zbl

[8] Yang B., “On generalizations Hilbert's inequality”, RGMIA Research Report Collection, 6:2 (2003), Article 16 | MR

[9] Yang B., “On new extensions of Hilbert's inequality”, Acta Math. Hungar., 104:3 (2004), 293–301 | MR

[10] Yang B., “On the best extension of Hardy–Hilbert's inequality with two parameters”, J. Ineq. Pure and Appl. Math., 6:3 (2005), Art. 81 | MR

[11] Yang B., “On a refinement of Hardy–Hilbert's inequality and its applications”, North. Math. J., 16:3 (2000), 279–286 | MR | Zbl

[12] Yang B., “On an Extended Hardy–Hilbert's Inequality and Some Reversed Form”, Int. Math. Forum, 1:36 (2006), 1905–1912 | MR | Zbl

[13] Yang B., “On New Generalization of Hilbert's inequality”, J. Math. Anal. Appl., 248:1 (2000), 29–40 | DOI | MR | Zbl

[14] Yang B., “On a relation between Hardy–Hilbert's inequality and Mulholland's inequality”, Acta Math. Sinica, 49:3 (2006), 559–566 | MR | Zbl

[15] Yang B., “On an extension of Hardy–Hilbert's inequality”, Kyungpook Math. J., 46 (2006), 425–431 | MR | Zbl

[16] Yang B., “On a new inequality similar to Hardy–Hilbert's inequality”, Math. Ineq. Appl., 6:1 (2003), 37–44 | DOI | MR | Zbl

[17] Yang B., Debnath L., “A Generalization of Mulholland's inequality”, Int. J. Math. Math. Sci., 56 (2003), 3591–3597 | MR | Zbl

[18] Wang Z., Guo D., An Introduction to Special Functions, Science Press, Beijing, 1979

[19] Kuang J., Applied Inequalities, Shangdong Science and Technology Press, Jinan, 2004