Spectra of semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 15-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to investigate possible structures and useful properties of prime subsemimodules of a semimodule $M$ over a semiring $R$ and show various applications of the properties. The main part of this work is to introduce a new class of semimodules over $R$ called strong primeful $R$-semimodules. It is shown that every non-zero strong primeful semimodule possesses the non-empty prime spectrum with the surjective natural map. Also, it is proved that this class contains the family of finitely generated $R$-semimodules properly.
@article{BASM_2011_3_a1,
     author = {Reza Ebrahimi Atani and Shahabaddin Ebrahimi Atani},
     title = {Spectra of semimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {15--28},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/}
}
TY  - JOUR
AU  - Reza Ebrahimi Atani
AU  - Shahabaddin Ebrahimi Atani
TI  - Spectra of semimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 15
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/
LA  - en
ID  - BASM_2011_3_a1
ER  - 
%0 Journal Article
%A Reza Ebrahimi Atani
%A Shahabaddin Ebrahimi Atani
%T Spectra of semimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 15-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/
%G en
%F BASM_2011_3_a1
Reza Ebrahimi Atani; Shahabaddin Ebrahimi Atani. Spectra of semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 15-28. http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/

[1] Allen P. J., “A fundamental theorem of homomorphisms for semirings”, Proc. Amer. Math. Soc., 21 (1969), 412–416 | DOI | MR | Zbl

[2] El-Bast Z., Smith P. F., “Multiplication modules”, Comm. Algebra, 16 (1988), 755–779 | DOI | MR | Zbl

[3] Chaudhari J. N., Bonde D., “On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings”, Kyungpook Math. J., 50 (2010), 329–336 | DOI | MR | Zbl

[4] Ebrahimi Atani S., “The ideal theory in quotients of commutative semirings”, Glas. Math., 42 (2007), 301–308 | DOI | MR | Zbl

[5] Ebrahimi Atani S., “On primal and weakly primal ideals over commutative semirings”, Glas. Math., 43 (2008), 13–23 | DOI | MR | Zbl

[6] Ebrahimi Atani S., “The zero-divisor graph with respect to ideals of a commutative semiring”, Glas. Math., 43 (2008), 309–320 | DOI | MR | Zbl

[7] Ebrahimi Atani S., “An ideal-based zero-divisor graph of a commutative semiring”, Glas. Math., 44:1 (2009), 141–153 | DOI | MR | Zbl

[8] Ebrahimi Atani S., Ebrahimi Atani R., “Very strong multiplication ideals and the ideal $\theta(I)$”, Glas. Math., 45:2 (2010), 395–406 | DOI | MR | Zbl

[9] Ebrahimi Atani R., Ebrahimi Atani S., “Ideal theory in commutative semirings”, Bul. Acad. Stiinte Rep. Mold. Matematica, 2008, no. 2(57), 14–23 | MR | Zbl

[10] Ebrahimi Atani R., Ebrahimi Atani S., “On subsemimodules of semimodules”, Bul. Acad. Stiinte Rep. Mold. Matematica, 2010, no. 2(63), 20–30 | MR | Zbl

[11] Ebrahimi Atani S., Ebrahimi Atani R., “Some remarks on partitioning semirings”, An. St. Univ. Ovidius Constanta, 18:1 (2010), 49–62 | MR | Zbl

[12] Ebrahimi Atani S., Shajari Kohan M., “A note on finitely generated multiplication semimodules over commutative semirings”, Inter. J. of Algebra, 4:8 (2010), 389–396 | MR | Zbl

[13] Golan J. S., Semirings and their applications, Kluwer Academic Publisher, Dordrecht, 1999 | MR

[14] Hebisch U., Weinert U. J., Halbringe–Algebraische Theorie und Anwendungen in der Informatik, Teubner, Stuttgart, 1993 | MR | Zbl

[15] Lu C. P., “Prime submodules of modules”, Comment. Math. Univ. St. Paul, 33 (1984), 61–69 | MR | Zbl

[16] Lu C. P., “Spectra of modules”, Comm. Algebra, 23:10 (1995), 3741–3752 | DOI | MR | Zbl

[17] Lu C. P., “A module whose prime spectrum has the surjective natural map”, Houston J. of Math., 33:1 (2007), 125–143 | MR | Zbl

[18] Maze M., Monico C., Rosenthal J., “Public key cryptography based on semigroup actions”, Adv. Mathematics of Communication, 1:4 (2007), 489–281 | DOI | MR

[19] Mosher J. R., “Generalized quotients of hemirings”, Compositio Math., 22 (1970), 275–281 | MR | Zbl