Spectra of semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 15-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to investigate possible structures and useful properties of prime subsemimodules of a semimodule $M$ over a semiring $R$ and show various applications of the properties. The main part of this work is to introduce a new class of semimodules over $R$ called strong primeful $R$-semimodules. It is shown that every non-zero strong primeful semimodule possesses the non-empty prime spectrum with the surjective natural map. Also, it is proved that this class contains the family of finitely generated $R$-semimodules properly.
@article{BASM_2011_3_a1,
     author = {Reza Ebrahimi Atani and Shahabaddin Ebrahimi Atani},
     title = {Spectra of semimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {15--28},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/}
}
TY  - JOUR
AU  - Reza Ebrahimi Atani
AU  - Shahabaddin Ebrahimi Atani
TI  - Spectra of semimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 15
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/
LA  - en
ID  - BASM_2011_3_a1
ER  - 
%0 Journal Article
%A Reza Ebrahimi Atani
%A Shahabaddin Ebrahimi Atani
%T Spectra of semimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 15-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/
%G en
%F BASM_2011_3_a1
Reza Ebrahimi Atani; Shahabaddin Ebrahimi Atani. Spectra of semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 15-28. http://geodesic.mathdoc.fr/item/BASM_2011_3_a1/