On Wallman compactifications of $T_0$-spaces and related questions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 102-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the compactification of the Wallman–Shanin type of $T_0$-spaces. We have introduced the notion of compressed compactification and proved that any compressed compactification is of the Wallman–Shanin type. The problem of the validity of the equality $\omega(X\times Y)=\omega X\times\omega Y$ is examined. Two open questions have arisen.
@article{BASM_2011_2_a8,
     author = {L. I. Calmu\c{t}chi and M. M. Choban},
     title = {On {Wallman} compactifications of $T_0$-spaces and related questions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {102--111},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_2_a8/}
}
TY  - JOUR
AU  - L. I. Calmuţchi
AU  - M. M. Choban
TI  - On Wallman compactifications of $T_0$-spaces and related questions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 102
EP  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_2_a8/
LA  - en
ID  - BASM_2011_2_a8
ER  - 
%0 Journal Article
%A L. I. Calmuţchi
%A M. M. Choban
%T On Wallman compactifications of $T_0$-spaces and related questions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 102-111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_2_a8/
%G en
%F BASM_2011_2_a8
L. I. Calmuţchi; M. M. Choban. On Wallman compactifications of $T_0$-spaces and related questions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 102-111. http://geodesic.mathdoc.fr/item/BASM_2011_2_a8/