Some addition theorems for rectifiable spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that if a compact Hausdorff space $B$ with the cardinality less than $2^{\omega_1}$ is represented as the union of two non-locally compact rectifiable subspaces $X$ and $Y$, then $X,Y$ and $B$ are separable and metrizable.
@article{BASM_2011_2_a4,
     author = {Alexander V. Arhangel'skii and Mitrofan M. Choban},
     title = {Some addition theorems for rectifiable spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {60--69},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_2_a4/}
}
TY  - JOUR
AU  - Alexander V. Arhangel'skii
AU  - Mitrofan M. Choban
TI  - Some addition theorems for rectifiable spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 60
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_2_a4/
LA  - en
ID  - BASM_2011_2_a4
ER  - 
%0 Journal Article
%A Alexander V. Arhangel'skii
%A Mitrofan M. Choban
%T Some addition theorems for rectifiable spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 60-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_2_a4/
%G en
%F BASM_2011_2_a4
Alexander V. Arhangel'skii; Mitrofan M. Choban. Some addition theorems for rectifiable spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 60-69. http://geodesic.mathdoc.fr/item/BASM_2011_2_a4/

[1] Amer. Math. Soc. Transl., 92 (1970), 1–39 | MR | Zbl

[2] Trans. Mosk. Math. Soc., 13, 1965, 1–62 | MR | Zbl | Zbl

[3] Russian Math. Surveys, 33:6 (1978), 33–96 | DOI | MR | Zbl | Zbl

[4] Arhangel'skii A. V., “Two types of remainders of topological groups”, Comment. Math. Univ. Carolinae, 49:1 (2008), 119–126 | MR | Zbl

[5] Arhangel'skii A. V., “A study of remainders of topological groups”, Fund. Math., 203:2 (2009), 165–178 | DOI | MR | Zbl

[6] Arhangel'skii A. V., Choban M. M., “Remainders of rectifiable spaces”, Topology and Appl., 157 (2010), 789–799 | DOI | MR | Zbl

[7] Arhangel'skii A. V., Ponomarev V. I., Fundamentals of General Topology in Problems and Exercises, translated from Russian, Reidel, 1984 | MR

[8] Arhangel'skii A. V., Tkachenko M. G., Topological Groups and related Structures, Atlantis Press, Paris; World Scientific, Hackensack, NJ, 2008 | MR | Zbl

[9] Choban M. M., “On topological homogeneous algebras”, Interim Reports of the Prague Topolog. Symposium, v. 2, 1987, 25–26

[10] Choban M. M., “The structure of locally compact algebras”, Serdica. Bulgaricae Math. Publ., 18 (1992), 129–137 | MR | Zbl

[11] Choban M. M., “Some topics in topological algebra”, Topology and Appl., 54 (1993), 183–202 | DOI | MR | Zbl

[12] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[13] Gul'ko A. S., “Rectifiable spaces”, Topology and Appl., 68 (1996), 107–112 | DOI | MR | Zbl

[14] Henriksen M., Isbell J. R., “Some properties of compactifications”, Duke Math. J., 25 (1958), 83–106 | DOI | MR

[15] Juhasz I., Cardinal Functions in Topology – ten years later, Matematical Centre Tracts, 123, Amsterdam, 1980 | MR | Zbl

[16] Trans. Amer. Math. Soc., 27 (1963), 125–142 | MR | MR | Zbl | Zbl

[17] Reznichenko E. A., Uspenskij V. V., “Pseudocompact Mal'tsev spaces”, Topology and Appl., 86 (1998), 83–104 | DOI | MR | Zbl

[18] Shapirovskij B. E., “On $\pi$-character and $\pi$-weight in bicompacta”, Dokl. Akad. Nauk SSSR, 223:4 (1975), 799–802 | MR | Zbl

[19] Math. USSR Sbornik, 67:2 (1990), 555–580 | DOI | MR | Zbl | Zbl