Estimation of the number of one-point expansions of a~topology which is given on a~finite set
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a finite set and $\tau$ be a topology on $X$ which has precisely $m$ open sets. If $t (\tau)$ is the number of possible one-point expansions of the topology $\tau$ on $Y=X\bigcup\{y\}$, then $\frac{m\cdot(m+3)}2-1\ge t(\tau)\ge2\cdot m+\log_2m-1$ and $\frac{m\cdot(m+3)}2-1=t(\tau)$ if and only if $\tau$ is a chain (i.e. it is a linearly ordered set) and $t(\tau)=2\cdot m+\log_2m-1$ if and only if $\tau$ is an atomistic lattice.
@article{BASM_2011_2_a1,
     author = {V. I. Arnautov},
     title = {Estimation of the number of one-point expansions of a~topology which is given on a~finite set},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--22},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_2_a1/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - Estimation of the number of one-point expansions of a~topology which is given on a~finite set
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 17
EP  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_2_a1/
LA  - en
ID  - BASM_2011_2_a1
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T Estimation of the number of one-point expansions of a~topology which is given on a~finite set
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 17-22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_2_a1/
%G en
%F BASM_2011_2_a1
V. I. Arnautov. Estimation of the number of one-point expansions of a~topology which is given on a~finite set. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 17-22. http://geodesic.mathdoc.fr/item/BASM_2011_2_a1/

[1] Arnautov V. I., Kochina A. V., “The method of construction of one-point expansions of a topology on a finite set and its application”, Buletinul Academiei de Stiinte a Respublicii Moldova. Matematica, 2010, no. 3(64), 67–76 | MR | Zbl

[2] Skornyakov L. A., Elements of the theory of structures, Nauka, Moscow, 1982, 147 pp. (Russian) | MR | Zbl

[3] Birkgoff G., Theory of lattices, Nauka, Moscow, 1984, 567 pp. (Russian)