On some operations in the lattice of submodules determined by preradicals
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In the lattice $\boldsymbol L(_RM)$ of all submodules of a module $_RM$ four operations are defined using the standard preradicals: $\alpha$-product, $\omega$-product, $\alpha$-coproduct and $\omega$-coproduct. Some properties of these operations, as well as some connections with the lattice operations of $\boldsymbol L(_RM)$ are indicated. For characteristic submodules these operations were studied in the work [5].
@article{BASM_2011_2_a0,
     author = {A. I. Kashu},
     title = {On some operations in the lattice of submodules determined by preradicals},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {5--16},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_2_a0/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On some operations in the lattice of submodules determined by preradicals
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 5
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_2_a0/
LA  - en
ID  - BASM_2011_2_a0
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On some operations in the lattice of submodules determined by preradicals
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 5-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_2_a0/
%G en
%F BASM_2011_2_a0
A. I. Kashu. On some operations in the lattice of submodules determined by preradicals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 5-16. http://geodesic.mathdoc.fr/item/BASM_2011_2_a0/