On 2-primal Ore extensions over Noetherian $\sigma(*)$-rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 42-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we discuss the prime radical of skew polynomial rings over Noetherian rings. We recall $\sigma(*)$ property on a ring $R$ (i.e. $a\sigma(a)\in P(R)$ implies $a\in P(R)$ for $a\in R$, where $P(R)$ is the prime radical of $R$, and $\sigma$ an automorphism of $R$). Let now $\delta$ be a $\sigma$-derivation of $R$ such that $\delta(\sigma(a))=\sigma(\delta(a))$ for all $a\in R$. Then we show that for a Noetherian $\sigma(*)$-ring, which is also an algebra over $\mathbb Q$, the Ore extension $R[x;\sigma,\delta]$ is 2-primal Noetherian (i.e. the nil radical and the prime radical of $R[x;\sigma,\delta]$ coincide).
@article{BASM_2011_1_a3,
     author = {Vijay Kumar Bhat},
     title = {On 2-primal {Ore} extensions over {Noetherian} $\sigma(*)$-rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {42--49},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_1_a3/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
TI  - On 2-primal Ore extensions over Noetherian $\sigma(*)$-rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 42
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_1_a3/
LA  - en
ID  - BASM_2011_1_a3
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%T On 2-primal Ore extensions over Noetherian $\sigma(*)$-rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 42-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_1_a3/
%G en
%F BASM_2011_1_a3
Vijay Kumar Bhat. On 2-primal Ore extensions over Noetherian $\sigma(*)$-rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 42-49. http://geodesic.mathdoc.fr/item/BASM_2011_1_a3/