On the structure of maximal non-finitely generated ideals of ring and Cohen's theorem
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider analogues of Cohen's theorem. We introduce new notions of almost prime left (right) submodule and $dr$-prime left (right) ideal, this allows us to extend Cohen's theorem for modular and non-commutative analogues. We prove that if every almost prime submodule of a finitely generated module is a finitely generated submodule, then any submodule of this module is finitely generated.
@article{BASM_2011_1_a2,
     author = {S. I. Bilavska and B. V. Zabavsky},
     title = {On the structure of maximal non-finitely generated ideals of ring and {Cohen's} theorem},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {33--41},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_1_a2/}
}
TY  - JOUR
AU  - S. I. Bilavska
AU  - B. V. Zabavsky
TI  - On the structure of maximal non-finitely generated ideals of ring and Cohen's theorem
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 33
EP  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_1_a2/
LA  - en
ID  - BASM_2011_1_a2
ER  - 
%0 Journal Article
%A S. I. Bilavska
%A B. V. Zabavsky
%T On the structure of maximal non-finitely generated ideals of ring and Cohen's theorem
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 33-41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_1_a2/
%G en
%F BASM_2011_1_a2
S. I. Bilavska; B. V. Zabavsky. On the structure of maximal non-finitely generated ideals of ring and Cohen's theorem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 33-41. http://geodesic.mathdoc.fr/item/BASM_2011_1_a2/