@article{BASM_2011_1_a1,
author = {R. H. Aramyan},
title = {Reconstruction of centrally symmetric convex bodies in $\mathbb{R}^n$},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {28--32},
year = {2011},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2011_1_a1/}
}
R. H. Aramyan. Reconstruction of centrally symmetric convex bodies in $\mathbb{R}^n$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 28-32. http://geodesic.mathdoc.fr/item/BASM_2011_1_a1/
[1] Ambartzumian R. V., “Combinatorial integral geometry, metric and zonoids”, Acta Appl. Math., 9 (1987), 3–27 | DOI | MR | Zbl
[2] Journal of Contemporary Math. Anal. (Armenian Academy of Sciences) | MR
[3] Journal of Contemporary Math. Anal. (Armenian Academy of Sciences) | MR
[4] Bakelman I. Ya, Verner A. L., Kantor B. E., Differential Geometry in the Large, Nauka, Moscow, 1973 | MR | Zbl
[5] Blaschke W., Kreis und Kugel, (Veit, Leipzig), 2nd Ed., De Gruyter, Berlin, 1956 | MR | Zbl
[6] Firey W. J., “Intermediate christoffel-minkowski problems for figures of revolution”, Israel Journal of Mathematics, 8:4 (1970), 384–390 | DOI | MR | Zbl
[7] Wiel W., Schneider R., Zonoids and related Topics, Convexity and its Applications, eds. P. Gruber, J. Wills, Birkhauser, Basel, 1983 | MR
[8] Goody P., Wiel W., Zonoids and Generalisations, Handbook of Convex Geometry, eds. P. Gruber, J. Wills, Birkhauser, Basel, 1993