Method for constructing one-point expansions of a topology on a finite set and its applications
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 67-76
Cet article a éte moissonné depuis la source Math-Net.Ru
The article consists of two parts. In the first part we present an algorithm which allows to receive, for any topology $\tau$ which is given on a set $X $ from $n$ elements, all topologies on the set $X\bigcup\{y\}$ each of which induces the topology $\tau$ on the set $X $. In the second part (as an example) this algorithm is applied for calculation of the number of topologies on the set $Y$ each of which induces the discrete topology on the set $X$.
@article{BASM_2010_3_a7,
author = {V. I. Arnautov and A. V. Kochina},
title = {Method for constructing one-point expansions of a~topology on a~finite set and its applications},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {67--76},
year = {2010},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a7/}
}
TY - JOUR AU - V. I. Arnautov AU - A. V. Kochina TI - Method for constructing one-point expansions of a topology on a finite set and its applications JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 67 EP - 76 IS - 3 UR - http://geodesic.mathdoc.fr/item/BASM_2010_3_a7/ LA - en ID - BASM_2010_3_a7 ER -
%0 Journal Article %A V. I. Arnautov %A A. V. Kochina %T Method for constructing one-point expansions of a topology on a finite set and its applications %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2010 %P 67-76 %N 3 %U http://geodesic.mathdoc.fr/item/BASM_2010_3_a7/ %G en %F BASM_2010_3_a7
V. I. Arnautov; A. V. Kochina. Method for constructing one-point expansions of a topology on a finite set and its applications. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 67-76. http://geodesic.mathdoc.fr/item/BASM_2010_3_a7/
[1] Gustavo N., Rubisno O., “Sobre el numero de topologias en un conjunto finito”, Boletin de Matematicas. Nueva Serie, 13:2 (2006), 136–158 | MR | Zbl
[2] The on-Line Encyclopedia of Integer Sequences!, number of topologies http://www.research.att.com
[3] Birkhoff G., The Theory of lattices, Nauka, Moscow, 1984 (Russian) | MR