Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 51-66

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of cubic differential systems with a bundle of two invariant straight lines and one invariant conic it is proved that a weak focus is a center if and only if the first four Liapunov quantities $L_j$, $j=\overline{1,4}$, vanish.
@article{BASM_2010_3_a6,
     author = {Dimitru Cozma},
     title = {Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--66},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a6/}
}
TY  - JOUR
AU  - Dimitru Cozma
TI  - Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 51
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_3_a6/
LA  - en
ID  - BASM_2010_3_a6
ER  - 
%0 Journal Article
%A Dimitru Cozma
%T Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 51-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_3_a6/
%G en
%F BASM_2010_3_a6
Dimitru Cozma. Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 51-66. http://geodesic.mathdoc.fr/item/BASM_2010_3_a6/